Last lecture in complexity theory

The class #P

A function $f:0,1^*\to\mathbb{N}$ belongs to the class $\#\mathsf{P}$ if

• exists polynomial p and a poly-time DTM M, such that

$$f(x) = |\{y \in \{0,1\}^{p(x)} | M(x,y) = 1\}|.$$

In other words (a bit informally),

- Let $L \in NP$. Let M be a poly-time DTM that checks certificates for L.
- If f(x) = "number of certificates for x" then $f \in \#P...$

■ and vice versa.

Generalizing $P \stackrel{?}{=} NP$ **question**

- FP the class of all functions $f: 0, 1^* \to \mathbb{N}$ computable in poly-time.
- **Theorem.** If FP = #P then P = NP.

#P might be "richer" than NP

- The problem CYCLE given a directed graph. Does it contain a simple cycle?
 - CYCLE \in P.
- The problem #CYCLE given a directed graph. How many simple cycles does it contain?

• #CYCLE $\in \#$ P.

- **Theorem.** If #CYCLE \in FP then P = NP.
- **Proof.** In a graph G with n vertices, replace each edge with a gadget that turns a cycle of length m into $2^{m(n \log n+1)}$ cycles. Then Hamiltonian graphs have more cycles than others.

#P-completeness

- $f: 0, 1^* \to \mathbb{N}$ is $\#\mathsf{P}$ -complete, if $f \in \#\mathsf{P}$ and $\#\mathsf{P} = \mathsf{F}\mathsf{P}^f$.
- The problem #SAT how many satisfying valuations does a propositional formula have?
- **Theorem.** #SAT is #P-complete.
- **Proof.** Our reduction from $\langle M, x, 1^n \rangle$ (where M is NTM) to SAT preserved the computation paths / certificates.
- \blacksquare #3-CNFSAT is also #P-complete.

Perfect matching in bipartite graphs

- A matching in a graph G = (V, E) is a set of edges $M \subseteq E$, such that each $v \in V$ is incident to at most one edge in M.
- A matching is perfect if |M| = |V|/2. "Does G have a perfect matching?" is in P.
- Let |X| = |Y| = n. Consider a bipartite graph $G = (X \cup Y, E)$ with $E \subseteq X \times Y$.
- Consider a $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = 1$ iff $(x_i, y_j) \in E$, and $a_{ij} = 0$ otherwise.

Permanent of a matrix

The permanent of $n \times n$ matrix $A = (a_{ij})$ is

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

 S_n — set of all permutations of $\{1, \ldots, n\}$.

- If A is obtained from a bipartite graph, then perm(A) counts perfect matchings.
- **Theorem.** perm is #P-complete (even for 0,1-matrices).

Proof

 \blacksquare perm(A) as the number of cycle covers in a *n*-node digraph.

 Cycle cover — a set of cycles, such that each node is on exactly one cycle.

First we consider general matrices (entries from \mathbb{Z}).

- ◆ The entries of the matrix appear as weights of edges.
- ◆ weight of a cycle cover the product of edges in it.
- Let φ be a 3-CNF formula with clauses C_1, \ldots, C_m and variables x_1, \ldots, x_n .
- See the gadgets in Arora&Barak's book (Fig 9.3)...

Going to 0,1-matrices

Replace an edge $u \xrightarrow{(-)k} v$ with k new vertices w_1, \ldots, w_k , edges $u \xrightarrow{(-)1} w_i \xrightarrow{1} v$ and self-loops by w_i .

- Gives us graph with edge weights in $\{1, -1\}$. Its permanent is in [-n!, n!] where n is the number of vertices.
- Compute the permanent modulo $2^m + 1$, where $2^m \ge 2n!$. Then $-1 \equiv 2^m$.

• Edge
$$u \xrightarrow{2^m} v$$
 may be replaced with $u \xrightarrow{2} w_1 \xrightarrow{2} \cdots \xrightarrow{2} w_{m-1} \xrightarrow{2} v$.

Optimization problems

An optimization problem consists of a

- Relation $\rho \subseteq \{0,1\}^* \times \{0,1\}^*$.
 - $x \rho y$ means that y is a feasible solution to the problem x.
- cost function $c: \{0,1\}^* \to \mathbb{N}$.
- (direction of optimization)
- If ρ, c are poly-time, then $\langle x, \rho, c, K \rangle \in \mathsf{NP}$

 \bullet Does there exist a feasible solution to the problem x of cost at most/least K?

Examples

■ Traveling salesman, independent set, vertex cover, knapsack,...

- Maximum satisfiability (MAXSAT) given Boolean formulas $\varphi_1, \ldots, \varphi_m$ with the same variables x_1, \ldots, x_n . Find a valuation of these variables that satisfies as many of $\varphi_1, \ldots, \varphi_m$ as possible.
 - k-MAXSAT each of the formulas φ_i depends on at most k variables.

Approximation algorithms

Let $\langle \rho, c \rangle$ be an optimization problem.

- For any $x \in \{0,1\}^*$, let opt(x) be the cost of optimal feasible solutions to x.
- (Det.) Algorithm M is an ε -approximation algorithm for $\langle \rho, c \rangle$, if for all (sufficiently large) $x \in \{0, 1\}^*$:
 - $x \rho M(x)$.
 - $\blacklozenge |c(M(x)) opt(x)| / \max\{c(M(x)), opt(x)\} \le \varepsilon$
- A 0-approximation algorithm finds an optimal feasible solution.
- A 1-approximation algorithm finds any feasible solution.

An optimization problem can be ε -approximated if it has a poly-time ε -approximation algorithm.

Approximability

■ Vertex cover can be 1/2-approximated.

- *k*-MAXSAT can be $(1 2^{-k})$ -approximated.
 - If all φ_i are disjunctions of variables then the problem can be 1/2-approximated.
 - If all φ_i are disjunctions with exactly k different variables, then the problem can be 1/k-approximated.
- If traveling salesman can be ε -approximated with $\varepsilon < 1$, then P = NP.
- Traveling salesman with triangle inequality is still NP-complete. It can be 1/3-approximated.
- Knapsack can be ε -approximated for any $\varepsilon > 0$.

Various complexity classes

- **NPO** all optimization problems with poly-time ρ and c.
- APX ε -approximable problems, where $\varepsilon < 1$.
- **PTAS** ε -approximable problems, for any $\varepsilon > 0$.
 - The mapping $\varepsilon \to M_{\varepsilon}$ must be poly-time, where M_{ε} is the ε -approximation algorithm.
- **FPTAS** there exists an algorithm $M(x, \varepsilon)$, such that
 - $M(\cdot, \varepsilon)$ is a ε -approximation algorithm.
 - Running time of $M(x,\varepsilon)$ is bounded by $q(|x|, 1/\varepsilon)$ for some polynomial q.

$FPTAS \subseteq PTAS \subseteq APX \subseteq NPO$. All inclusions are strict unless P = NP.

Separations (if $P \neq NP$)

• APX \subseteq NPO because travelling salesman is non-approximable.

- There is no fptas for strongly NP-complete problems.
 - In problem statement, numeric values are polynomial in problem size.
 - ◆ BIN PACKING separates PTAS and FPTAS.

There are artificial problems that separate PTAS and APX.

• Problem — propositional formula φ . Feasible solution — any valuation of variables. $c(x_1, \ldots, x_n) = 1$ iff $\varphi(x_1, \ldots, x_n) =$ true, otherwise $c(x_1, \ldots, x_n) = 2$.