
Last lecture in complexity
theory

The class #P

2 / 15

A function f : 0, 1∗ → N belongs to the class #P if

■ exists polynomial p and a poly-time DTM M , such that

■ f(x) = |{y ∈ {0, 1}p(x) |M(x, y) = 1}|.

In other words (a bit informally),

■ Let L ∈ NP. Let M be a poly-time DTM that checks certificates
for L.

■ If f(x) = “number of certificates for x” then f ∈ #P. . .

■ and vice versa.

Generalizing P
?
= NP question

3 / 15

■ FP — the class of all functions f : 0, 1∗ → N computable in
poly-time.

■ Theorem. If FP = #P then P = NP.

#P might be “richer” than NP

4 / 15

■ The problem CYCLE — given a directed graph. Does it contain a
simple cycle?

◆ CYCLE ∈ P.

■ The problem #CYCLE — given a directed graph. How many
simple cycles does it contain?

◆ #CYCLE ∈ #P.

■ Theorem. If #CYCLE ∈ FP then P = NP.

■ Proof. In a graph G with n vertices, replace each edge with a
gadget that turns a cycle of length m into 2m(n logn+1) cycles. Then
Hamiltonian graphs have more cycles than others.

#P-completeness

5 / 15

■ f : 0, 1∗ → N is #P-complete, if f ∈ #P and #P = FPf .

■ The problem #SAT — how many satisfying valuations does a
propositional formula have?

■ Theorem. #SAT is #P-complete.

■ Proof. Our reduction from 〈M,x, 1n〉 (where M is NTM) to SAT
preserved the computation paths / certificates.

■ #3-CNFSAT is also #P-complete.

Perfect matching in bipartite graphs

6 / 15

■ A matching in a graph G = (V,E) is a set of edges M ⊆ E, such
that each v ∈ V is incident to at most one edge in M .

■ A matching is perfect if |M | = |V |/2. “Does G have a perfect
matching?” is in P.

■ Let |X| = |Y | = n. Consider a bipartite graph G = (X ∪ Y,E)
with E ⊆ X × Y .

■ Consider a n× n matrix A = (aij), where aij = 1 iff (xi, yj) ∈ E,
and aij = 0 otherwise.

Permanent of a matrix

7 / 15

The permanent of n× n matrix A = (aij) is

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i)

Sn — set of all permutations of {1, . . . , n}.

■ If A is obtained from a bipartite graph, then perm(A) counts
perfect matchings.

■ Theorem. perm is #P-complete (even for 0,1-matrices).

Proof

8 / 15

■ perm(A) as the number of cycle covers in a n-node digraph.

◆ Cycle cover — a set of cycles, such that each node is on
exactly one cycle.

■ First we consider general matrices (entries from Z).

◆ The entries of the matrix appear as weights of edges.

◆ weight of a cycle cover — the product of edges in it.

■ Let ϕ be a 3-CNF formula with clauses C1, . . . , Cm and variables
x1, . . . , xn.

■ See the gadgets in Arora&Barak’s book (Fig 9.3). . .

Going to 0,1-matrices

9 / 15

■ Replace an edge u
(−)k
−→ v with k new vertices w1, . . . , wk, edges

u
(−)1
−→ wi

1
−→ v and self-loops by wi.

■ Gives us graph with edge weights in {1,−1}. Its permanent is in
[−n!, n!] where n is the number of vertices.

■ Compute the permanent modulo 2m + 1, where 2m ≥ 2n!. Then
−1 ≡ 2m.

■ Edge u
2m
−→ v may be replaced with

u
2

−→ w1
2

−→ · · ·
2

−→ wm−1
2

−→ v.

Optimization problems

10 / 15

■ An optimization problem consists of a

◆ Relation ρ ⊆ {0, 1}∗ × {0, 1}∗.

■ x ρ y means that y is a feasible solution to the problem x.

◆ cost function c : {0, 1}∗ → N.

◆ (direction of optimization)

■ If ρ, c are poly-time, then 〈x, ρ, c,K〉 ∈ NP

◆ Does there exist a feasible solution to the problem x of cost at
most/least K?

Examples

11 / 15

■ Traveling salesman, independent set, vertex cover, knapsack,. . .

■ Maximum satisfiability (MAXSAT) — given Boolean formulas
ϕ1, . . . , ϕm with the same variables x1, . . . , xn. Find a valuation of
these variables that satisfies as many of ϕ1, . . . , ϕm as possible.

◆ k-MAXSAT — each of the formulas ϕi depends on at most k
variables.

■ . . .

Approximation algorithms

12 / 15

Let 〈ρ, c〉 be an optimization problem.

■ For any x ∈ {0, 1}∗, let opt(x) be the cost of optimal feasible
solutions to x.

■ (Det.) Algorithm M is an ε-approximation algorithm for 〈ρ, c〉, if
for all (sufficiently large) x ∈ {0, 1}∗:

◆ x ρ M(x).

◆ |c(M(x))− opt(x)|/max{c(M(x)), opt(x)} ≤ ε

■ A 0-approximation algorithm finds an optimal feasible solution.

■ A 1-approximation algorithm finds any feasible solution.

An optimization problem can be ε-approximated if it has a poly-time
ε-approximation algorithm.

Approximability

13 / 15

■ Vertex cover can be 1/2-approximated.

■ k-MAXSAT can be (1− 2−k)-approximated.

◆ If all ϕi are disjunctions of variables then the problem can be
1/2-approximated.

◆ If all ϕi are disjunctions with exactly k different variables, then
the problem can be 1/k-approximated.

■ If traveling salesman can be ε-approximated with ε < 1, then
P = NP.

■ Traveling salesman with triangle inequality is still NP-complete. It
can be 1/3-approximated.

■ Knapsack can be ε-approximated for any ε > 0.

Various complexity classes

14 / 15

■ NPO — all optimization problems with poly-time ρ and c.

■ APX — ε-approximable problems, where ε < 1.

■ PTAS — ε-approximable problems, for any ε > 0.

◆ The mapping ε → Mε must be poly-time, where Mε is the
ε-approximation algorithm.

■ FPTAS — there exists an algorithm M(x, ε), such that

◆ M(·, ε) is a ε-approximation algorithm.

◆ Running time of M(x, ε) is bounded by q(|x|, 1/ε) for some
polynomial q.

FPTAS ⊆ PTAS ⊆ APX ⊆ NPO. All inclusions are strict unless P = NP.

Separations (if P 6= NP)

15 / 15

■ APX (NPO because travelling salesman is non-approximable.

■ There is no fptas for strongly NP-complete problems.

◆ In problem statement, numeric values are polynomial in
problem size.

◆ BIN PACKING separates PTAS and FPTAS.

■ There are artificial problems that separate PTAS and APX.

◆ Problem — propositional formula ϕ. Feasible solution — any
valuation of variables. c(x1, . . . , xn) = 1 iff
ϕ(x1, . . . , xn) = true, otherwise c(x1, . . . , xn) = 2.

	The class #¶
	Generalizing ¶=?NP question
	#¶ might be ``richer'' than NP
	#¶-completeness
	Perfect matching in bipartite graphs
	Permanent of a matrix
	Proof
	Going to 0,1-matrices
	Optimization problems
	Examples
	Approximation algorithms
	Approximability
	Various complexity classes
	Separations (if ¶=NP)

