Last lecture in complexity
theory

The class #P

A function f : 0,1* — N belongs to the class #P if
m exists polynomial p and a poly-time DTM M, such that
n f(z) = {y € {0, 1}7 | M(z,y) = 1}].

In other words (a bit informally),

m Let L € NP. Let M be a poly-time DTM that checks certificates
for L.

m If f(x) = “number of certificates for " then f € #P. ..

m and vice versa.

2 /15

Generalizing P ~ NP question

m FP — the class of all functions f : 0,1* — N computable in
poly-time.

m Theorem. If FP = #P then P = NP.

3/15

#P might be “richer” than NP

The problem CYCLE — given a directed graph. Does it contain a
simple cycle?

0 CYCLE € P.

The problem #CYCLE — given a directed graph. How many
simple cycles does it contain?

] #CYCLE € #P,

Theorem. |f #CYCLE € FP then P = NP.

Proof. In a graph G with n vertices, replace each edge with a
gadget that turns a cycle of length m into 2m(?1°en+1) cycles. Then
Hamiltonian graphs have more cycles than others.

4 /15

#P-completeness

f:0,1" = Nis #P-complete, if f € #P and #P = FP/.

The problem #SAT — how many satisfying valuations does a
propositional formula have?

Theorem. #SAT is #P-complete.

Proof. Our reduction from (M, x,1™) (where M is NTM) to SAT
preserved the computation paths / certificates.

#3-CNFSAT is also #P-complete.

5/ 15

Perfect matching in bipartite graphs

A matching in a graph G = (V, E) is a set of edges M C FE, such
that each v € V' is incident to at most one edge in M.

A matching is perfect if [M| = [V|/2. “Does G have a perfect
matching?” is in P.

Let | X| = |Y| = n. Consider a bipartite graph G = (X UY, F)
with £/ C X X Y.

Consider a n x n matrix A = (a;;), where a;; = 1 iff (z;,y,) € E,
and a;; = 0 otherwise.

6 /15

Permanent of a matrix

The permanent of n X n matrix A = (a;;) is

perm(A) = Z Haw(z)
ceS, 1=1
S, — set of all permutations of {1,...,n}.

m If A is obtained from a bipartite graph, then perm(A) counts
perfect matchings.

m Theorem. perm is #P-complete (even for 0,1-matrices).

7/15

Proof

perm(A) as the number of cycle covers in a n-node digraph.

[0 Cycle cover — a set of cycles, such that each node is on
exactly one cycle.

First we consider general matrices (entries from Z).

[0 The entries of the matrix appear as weights of edges.

[0 weight of a cycle cover — the product of edges in it.

Let © be a 3-CNF formula with clauses (7, ..., C,, and variables
L1yeeoyLp.
See the gadgets in Arora&Barak's book (Fig 9.3). ..

8 /15

Going to 0,1-matrices

)k . .
Replace an edge u Q> v with £ new vertices wy, ..., w;, edges

U (;)1> w; s v and self-loops by w;.

Gives us graph with edge weights in {1, —1}. Its permanent is in
|[—n!, n!] where n is the number of vertices.

Compute the permanent modulo 2™ + 1, where 2™ > 2n!. Then
—1 =2™.

m .
Edge u — v may be replaced with
2 2 2 2
U—>w —> —> Wy—1 — V.

9 /15

Optimization problems

m An optimization problem consists of a
0 Relation p C {0,1}* x {0, 1}".
= T py means that y is a feasible solution to the problem .

0 cost function ¢: {0,1}* — N.
0 (direction of optimization)
m If p, c are poly-time, then (z, p,c, K) € NP

[0 Does there exist a feasible solution to the problem x of cost at
most /least K7

10 / 15

Examples

m T[raveling salesman, independent set, vertex cover, knapsack,. ..

m Maximum satisfiability (MAXSAT) — given Boolean formulas
01, ..., Om With the same variables x4, ..., z,. Find a valuation of
these variables that satisfies as many of ¢4, ..., ¢, as possible.

0 E-MAXSAT — each of the formulas ¢; depends on at most &
variables.

11 /15

Approximation algorithms

Let (p,c) be an optimization problem.

m Forany z € {0, 1}, let opt(x) be the cost of optimal feasible
solutions to z.

m (Det.) Algorithm M is an s-approximation algorithm for (p, c), if
for all (sufficiently large) = € {0, 1}*:

0z p M(x).
0 [e(M(x)) — opt(z)|/ max{c(M(x)), opt(z)} < €
m A O-approximation algorithm finds an optimal feasible solution.
m A l-approximation algorithm finds any feasible solution.
An optimization problem can be s-approximated if it has a poly-time

~_ g-approximation algorithm. ...

12 /15

Approximability

Vertex cover can be 1/2-approximated.
k-MAXSAT can be (1 — 27%)-approximated.

O If all ; are disjunctions of variables then the problem can be
1/2-approximated.

O If all ¢, are disjunctions with exactly k different variables, then
the problem can be 1/k-approximated.

If traveling salesman can be s-approximated with ¢ < 1, then
P = NP.

Traveling salesman with triangle inequality is still NP-complete. It
can be 1/3-approximated.

Knapsack can be s-approximated for any € > 0.

13 / 15

Various complexity classes

m NPO — all optimization problems with poly-time p and c.
m APX — c-approximable problems, where ¢ < 1.
m PTAS — c-approximable problems, for any ¢ > 0.

[0 The mapping ¢ — M, must be poly-time, where M, is the
e-approximation algorithm.

m FPTAS — there exists an algorithm Mz,), such that

0 M(-,¢) is a e-approximation algorithm.

0 Running time of M (x,¢) is bounded by ¢(|z|,1/¢) for some
polynomial g.

FPTAS C PTAS C APX C NPO. All inclusions are strict unless P = NP.

14 / 15

Separations (if P # NP)

m APX C NPO because travelling salesman is non-approximable.
m [here is no fptas for strongly NP-complete problems.

[0 In problem statement, numeric values are polynomial in
problem size.

0 BIN PACKING separates PTAS and FPTAS.

m [here are artificial problems that separate PTAS and APX.

[0 Problem — propositional formula . Feasible solution — any
valuation of variables. c¢(xy,...,z,) = 1iff
©(x1,...,T,) = true, otherwise c(x1,...,x,) = 2.

15 / 15

	The class #¶
	Generalizing ¶=?NP question
	#¶ might be ``richer'' than NP
	#¶-completeness
	Perfect matching in bipartite graphs
	Permanent of a matrix
	Proof
	Going to 0,1-matrices
	Optimization problems
	Examples
	Approximation algorithms
	Approximability
	Various complexity classes
	Separations (if ¶=NP)

