
MTAT.07.004 — Complexity Theory November 4th, 2011

Lecture 8

Lecturer: Peeter Laud Scribe(s): Kristjan Krips

Circuit complexity

Non-uniform model of computation

1 Boolean circuits

A boolean circuit is a directed acyclic graph(DAG), where each internal node v contains a
Boolean operation op(v) of small fixed arity. There are three types of nodes in the boolean
circuit: input nodes, internal nodes and output nodes. Only the internal node have Boolean
operations. E.g. the operation might be a conjunction, a disjunction, negation or a constant
if the node always outputs the same value. The arity of the Boolean operation determines
for the corresponding node how many incoming edges the node has. If the operation is not
symmetric then it is important to distinguish different orderings of the incoming values.
Therefore, the edges of the nodes are ordered. The input to the boolean circuit comes from
the input nodes and the output of the circuits comes from the output nodes. Each output
node has only a single output edge. But there might be several input and output nodes
and therefore they have to be ordered so that it would be possible to distinguish them. An
example of a boolean circuit is shown on the Figure 1.

V &

&
V

Figure 1: A boolean circuit with four Boolean operations.

Definition 1 A Boolean circuit C with n inputs and m outputs defines a function

[[C]] : {0, 1}n → {0, l}m .

♦

8-1

This means that the Boolean circuit takes n-bit input and outputs m-bit result. Mostly we
consider the cases with m = 1, i.e. for recognizing a language. Also, from this definition
we see that each Boolean circuit can be used only for a fixed length input. Additionally, as
there are no cycles in the Boolean circuits and the input is limited to a finite size then the
amount of work that is done in the boolean circuit is also finite. In order to model cycles
we would have to increase the size of the circuit.

1.1 The complexity classes SIZE(T)

We want to define a family of circuits in order to speak about circuits with variable length
input.

Definition 2 A family of circuits is {Cn}n∈N, where Cn is a circuit with n inputs and 1
output. The family is of size T : N → N if ∃c∀n : |Cn| ≤ c · T (n). ♦

Therefore, we have to define a boolean circuit for each input length. The size of the boolean
circuit is the number of nodes it contains, the number of edges does not differ much from
the number of nodes as there are not many input edges for each node. SIZE(T) limits the
size of the boolean circuit. If a language belongs to SIZE(T) if it can be recognized by a
family of boolean circuits that is size-limited by O(T).

Now we will define a class of languages that can be recognized by boolean circuits with
polynomial size. We denote this class with P/poly.

P/poly = ∪c∈NSIZE(λn.n
c).

We call the circuit model of computation non-uniform. The notion of non-uniformity comes
from the fact that for inputs of different lengths the computations can be different. We
notice that the total size of every family of circuits is infinite, because the description of
the family would be infinite.

1.2 Effects of non-uniformity

Every language is recognizable by a family of boolean circuits. For that O(2n ·n) nodes are
needed.

Claim 1 L ∈ SIZE(λn.n · 2n) for any language L ⊆ {0, 1}∗.

Proof Let there be a language L, then we must construct a circuit Cn that recog-
nizes L ∩ {0, 1}n. So we will have to construct such Cn. As L is finite, it is sufficient
to look through/write down all possible words in L in order to show that Cn recognizes
it. So we need n inputs, let them be b1, b2, · · · , bn and all possible words of the language
L ∩ {0, 1}n = {w1, w2, · · · , wk}. Now we will have to check if b1, b2, · · · , bn can give wi if
i ∈ {1, k}. Each bi, i ∈ {1, k} has the value 0 or 1. The value could be negated and there-
fore we have to add an operation between each bi and wi. If there is no negation, then the
operation will be an identity function. To check if the input to the wi-s gives wi we will use
the conjunction operation and therefore there will be conjunction nodes with n input edges.
However, we can replace these nodes if we expand the n-input conjunction into a boolean

8-2

circuit of conjunctions with each node having two inputs, doing this will increase the size
of the initial boolean circuit by n − 1 nodes for each wi. Finally, a disjunction of wi-s has
to be computed and as the disjunction has many input edges we will have to expand the
disjunction, in total the expanded disjunction takes 2n − 1 nodes. The completed boolean
circuit Cn is depicted on Figure 2.

Now we can find out the size of the circuit Cn. Expansion of the disjunction takes 2n − 1
nodes. Expansion of the conjunction node takes 2n− 1 nodes and there can be 2n different
wi-s. The input nodes and the output node take n+ 1 nodes. So, the total size of Cn is

|Cn| ≤ 2n − 1 + 2n(2n− 1) + n+ 1 = 2n · 2n − 1.

&

V

w1 w2

...

wk

b1 b2 bn

w1,1 w1,2

...

w1,n

Figure 2: How to build Cn in order to recognize a language.

Claim 2 L = {x ∈ {0, 1}∗|TM|x| stops on input 1|x|} ∈ SIZE(const).

In this claim, a language L is defined where a word belongs to L iff all words of the same
length belong to L. Hence this language can be recognized by the following family of
circuits:

Cn =

{

true, if ∃w ∈ {0, 1}n : w ∈ L

false, if ∀w ∈ {0, 1}n : w 6∈ L .

We also notice that if we can recognize whether a word belongs to the language L, then
we can also solve the halting problem. Hence a language with high uniform complexity
(defined through Turing machines) can have a small circuit complexity.

1.3 Uniformly generated circuits

Definition 3 A family of circuits {Cn}n∈N in uniform if there exists a Turing machine M,
such that M(1n) outputs Cn. ♦

8-3

The family is poly-time uniform if the TM M works in polynomial time.
The family is log-space uniform if the TM M works in logarithmic space (in n). When we
require the generation in logarithmic space, we implicitly still require that the generation
takes polynomial time (otherwise the generation cannot stop at all). I.e the size of Cn is
still polynomial in n.

1.3.1 Uniformly generated circuits and class P

We consider a boolean circuit to be efficiently computable if it can be computed in P. We
consider a family of circuits efficiently computable if it is uniform.

Theorem 3 A language L is accepted by a poly-time / log-space uniform family of circuits
iff L ∈ P .

If we have a family of boolean circuits generated in polynomial time, then the languages
that are accepted by this family are exactly these that are accepted by algorithms running
in polynomial time.

Proof We will rewrite the theorem in two statements and then show that these state-
ments are equal.
1. ∃ a uniform {Cn}n∈N generated in polynomial time by MG that accepts language L.
2. ∃ DTM M that works in polynomial time and accepts language L.

First we will show 1. ⇒ 2. and then 2. ⇒ 1.

1. ⇒ 2. In this case M generates Cn and then computes its output. First M will run MG

on the input n to generate Cn and then M will run Cn.

2. ⇒ 1. We have M and we will have to describe how MG functions. MG gets the input
and has to output Cn that works for any input with length n. MG(1

n) could take the
description of M and generate a circuit of it, for that MG would have to expand the cycles
in M . This can also be explained with a universal Turing machine that interprets M . Such
Turing machine would check what is the next step that M would make and then it would
make that step. Then it could go to the next step of M and do the same. With such moves
the universal Turing machine can expand the cycles of M . It is straightforward to translate
such behaviour into a circuit.

Corollary 4 P ⊆ P/poly.

The corollary is obvious as P/poly can be a uniform or non-uniform family of circuits and
P corresponds to a uniform family of circuits.

2 Turing machines that take advice

Definition 4 Let f, g : N → N. A language L belongs to the class DTIME(f)/g, if there
exists a family of bit-strings {αn}n∈N, where αn ∈ {0, 1}g(n) and a deterministic Turing

8-4

machine M working in time O(f) (considering only the first argument) so that for all n ∈ N

and x ∈ {0, 1}n : x ∈ L ↔ M(x, αn) accepts. ♦

In this definition αn is called the advice.
E.g., if L is unary, i.e. it consists of bit strings of the form 1n, then L ∈ DTIME(const)/const.
In this case the advice tells for every value of n if 1n belongs to the language. With this
construction we assume that the input contains only ones because checking the input would
mean that the advice cannot be a constant.

2.1 Advice vs. circuits

Theorem 5 P/poly =
⋃

c,d∈NDTIME(nc)/nd.

Proof We will start by writing down the statements for which we want to show the
equality.
1. L ∈ P/poly means that ∃{Cn}n∈N : |Cn| ≤ poly(n) and Cn accepts L ∩ {0, 1}n.
2. ∃M, {αn}n∈N : so that the runtime of M is ≤ poly(n) and αn| ≤ poly(n) and M(·, αn)
accepts L ∩ {0, 1}n.

1. ⇒ 2. We will have to describe what is Cn given M,αn and the runtime of M. We could
transform M into a circuit. The circuit has n inputs corresponding to the first argument
and |αn| inputs corresponding to the second argument. It also has a single output. As M ’s
runtime is polynomial, the circuit that corresponds to M is of polynomial size in n. Now,
in order to complete the construction of Cn we would have to move the |αn| inputs into the
circuit. This is possible if these nodes are transformed into internal nodes with zero inputs
and a constant output, the bit corresponding to αn.

2. ⇒ 1. A polynomial size Cn is given and we need to construct Turing machine M and αn.
We notice that Cn and αn are related as both the family of Cn and family of αn are infinite.
Therefore, αn encodes the graph Cn and M interprets Boolean circuits. The running time
of M is linear in respect to the size of the Boolean circuit and the Boolean circuit was
polynomial in respect to the input. In order to interpret the Boolean circuit in linear time
in respect to the size of the circuit we will have to evaluate all the nodes.

3 Karp-Lipton theorem

Theorem 6 If SAT ∈ P/poly then PH = σp
2.

This theorem also says that if polynomial hierarchy does not collapse then SAT 6∈ P/poly.
The theorem binds the uniform family of circuits and the non-uniform family of circuits.

Proof For the proof we will show that if SAT ∈ P/poly, then Πp
2 ⊆ σp

2 . We will take
a Πp

2 complete task and show that it is in σp
2 . Let {Cn}n∈N be the polynomial size circuit

family recognizing SAT . Now we recall that

Π2SAT = {〈~u,~v, ϕ(~u,~v)〉 |∀~u∃~v : ϕ(~u,~v) = true} .

8-5

We also recall that SAT is self-reducible, i.e. SAT is solvable if there is an oracle who solves
any instance of SAT. If we have an oracle which solves SAT then it is easy to find a satisfying
evaluation for SAT. If the whole formula can be evaluated to true then we can take the first
variable and evaluate it as true and then check if the whole formula can still be evaluated
to true. If fixing the first variable true made it impossible to evaluate the whole formula to
true then the first variable has to be false. By continuing like this a satisfying evaluation
can be found. This can be also be written as a Boolean circuit. Hence we deduce that the
existence of {Cn}n∈N implies the existence of polynomial size circuit family {Cn}

′
n∈N, such

that
ϕ ∈ {0, 1}n is satisfiable ⇒ ϕ(C ′

n(ϕ)) = true.

If ϕ does not have a true evaluation then ϕ is false for every input.

If we are not worried about size and order, then a formula in the form ∀u∃v : ϕ(u, v) can
be written as ∃f∀u : ϕ(u, f(u)). This can be done because ∀u∃v is like a formula which for
every u outputs a corresponding v. The drawback of this approach is that the description
of f could take a large number of bits. However, the existence of a polynomial size {C ′

n}n∈N
allows to express f in a polynomial number of bits.

The next formula can be interpreted so that for ∀u∃v so that ϕ(u, v) and the formula
evaluates to true iff ∀u∃v but existence of v is written as a function that gives us v. This
function can be written so that it is C ′ and it outputs a true evaluation for a formula that
has a true evaluation. The input formula for C ′ will be ϕ, where the value of u has been
already fixed to be empty. Therefore, the only variable in ϕ will be v.

〈~u,~v, ϕ(~u,~v)〉 ∈ Π2SAT ⇔ ∃C ′ ∈ {0, 1}poly(|ϕ|) ∀~u : ϕ(~u,C ′(ϕ(~u,~·))) = true.

The problem in the right is in σp
2 . This problem can be checked in polynomial time because

C ′ is of polynomial size, interpreting the formula is done in polynomial time, partial evalu-
ation of ϕ is in polynomial time and computing ϕ is also done in polynomial time.

In the proof we assumed that we have Cn but we used it only for showing that C ′
n exists

and we used the existence of C ′
n to check if a true evaluation exists.

4 Size hierarchy

Now we will speak about the size hierarchy of families of circuits.

Claim 7 Most functions require large circuits. I.e. for a large enough n, all but exponen-
tially small fraction of functions {0, 1}n → {0, 1} requires a circuit of size at least 2n/(10n).

Proof This is because there are not so many small circuits as there are functions. There
are 22

n

functions with n-bit input and 1-bit output. As the output can be 0 or 1 we get
two options for the output. The number of functions comes from the fact that we take the
number of output elements to the power of the number of input elements. We would like

8-6

to know how many Boolean circuits exist with the size s if the Boolean circuit would be of
the type with n-bit input and 1-bit output and s would be the number of internal nodes.
We could say that in every node there is one operation, AND, OR, NEGATION. Therefore
there are three possibilities for each internal node and as there are s internal nodes there are
a total of 3s different possibilities for the operations. For the first node the input comes from
n ancestor nodes, for the next node the input can come from n+ 1 ancestor nodes and for
the last node the input can come from all other nodes. We could approximately say that for
each node among the s internal nodes we could choose any other node as the ancestor from
s internal nodes and n input nodes. Therefore, for a node there are n+ s ways for choosing
the first ancestor and n + s ways for choosing the second ancestor. We have s internal
nodes, so in total there are [(n + s)(n + s)]s = (n + s)2s ways for choosing the ancestors.
Therefore, there are up to 3s(n + s)2s Boolean circuits of this type. If s ≤ 2n/(10n) then
this number is much smaller than 22

n

.

Theorem 8 If n < T (n) < T ′(n) < 2n/(100n) and T · log2 T ∈ o(T ′), then SIZE(T) (

SIZE(T ′).

Proof For every l, there is a function fl : {0, 1}
l → {0, 1} not computable by a circuit of

size 2l/(10l) but fl is computable by a circuit of size 2l · (10l). The difference of the circuits
is not very big, its of logarithmic size as 100l2 is proportional to the square of the logarithm
of 2l. We shift the difference to between T and T ′. Let s : N → N be such that:

• 2s(n) · (10s(n)) ≤ T ′(n)

• 2s(n)/(10s(n)) ≥ T (n)

We can conclude that such s exists if T and T ′ have log-squared difference.

Let g : {0, 1}∗ → {0, 1} be the following

g(x) = fs(|x|)(lsbs(|x|)(x))

then g ∈ SIZE(T ′)\SIZE(T). This means that by running g, f is applied to a part of x, to
the rightmost bits of x. The circuit that computes g is like the circuit that computes f but
g does not use a large part of the input bits.

8-7

