
MTAT.07.004 — Complexity Theory November 10th, 2011

Lecture 9

Lecturer: Peeter Laud Scribe(s): Kristjan Krips

1 The class NC

We will define a complexity class NCj . The class is named after Nicholas John Pippenger.

Definition 1 A language L belongs to the class NCj if it can be decided by a log-space
uniform family of circuits with depth O(λn.logj n). ♦

The definition says that the family of circuits has to be uniformly generated using logarith-
mic memory and therefore the circuit has to be of polynomial size. It is important that the
circuit is of polylogarithmic depth, where depth is the longest path from input to output.
As defined before, each node in the Boolean circuit has a maximum of two inputs.

The class NC is a union of classes NCj , NC = ∪j∈NNCj . The class is important because it
is the model for efficient parallel computation. A problem is efficiently parallelizable if it
can be computed with a polynomial number of processors in polylogarithmic time. Solving
a polynomial time problem with parallelization should reduce the time complexity to poly-
logarithmic. Such algorithms are scalable, e.g. if the number of processors increases two
times then the solving time reduces by a factor of 2.

Actually, the previous statement is not so clear compared to the statement that “P models
efficient computation”. When comparing problems in polynomial time and exponential
time then it is intuitional to see the difference. However, if we compare a polylogarithmic
problem to a small polynomial problem, e.g. log3n to

√
n then at first the logarithmic

problem grows faster than the polynomial problem and the they will be about equal when
n = 109. But this shows that in this case we would benefit from polylogarithmic complexity
only if we would have more than 109 processors. Also, if we have large constants in the
polylogarithmic problem then n would have to be large before polylogarithmic problem
would be easier to solve than the problem in

√
n.

2 P-completeness

Definition 2 A problem in P is P-complete if every other problem in P is log-space re-
ducible to it. ♦

The P-complete problems are the hardest to parallelize.

9-1

2.1 Reducibility in NC

Claim 1 Graph reachability is in NC2. Boolean matrix multiplication is in NC1 and there-
fore transitive closure is in NC2.

Proof It is important to know that the transitive closure of a matrix is computable in
class NC with a circuit of depth log2. For multiplication we view a ring ({true, false} ,∨,&),
where ∨ defines addition and & defines multiplication on the set {true, false}.

Now, if we have two square matrices then we use the standard formula for multiplication.
For matrices A and B of size n×n the product elements cj,k can be found with the formula
cj,k =

∨n
i=1 aj,i&bi,k. From the formula we see that we can parallelize computing the values

of the product. Computing the disjunction
∨n

i=1 aj,i&bi,k in parallel takes log n time. For
parallelization n3 processors are required as ∀i, j, k we have to compute aj,i& bi,k.

The transitive closure of a matrix A is A+ = A + A2 + A3 + · · ·. More important is
reflexive transitive closure if we want to know if two nodes are connected in a graph,
A∗ = I + A + A2 + A3 + · · ·. The reflexive transitive closure shows if two nodes are
connected by a path of arbitrary length.
With Boolean matrices we can compute A∗ so that first we will take matrix I +A, this will
show if two nodes are connected with at most one step. Now we will take a square of it
(I +A)2 = I ∨A ∨A ∨A2 = I ∨A ∨A2 and this shows if two nodes are connected with at
most two steps. The previous matrix can also be squared to get (I + A)4, which shows if
two nodes are connected in at most four steps. We can continue like that and finally we will
get (I + A)2

log n

, which shows if two nodes are connected in at most n steps. Therefore, if
multiplication can be done in logarithmic time then transitive closure can be computed in
log2 time. Also, the corresponding circuit that does the computation has to be generated
in logarithmic memory.

Theorem 2 If L ≤L
m L′ and L′ ∈ NC then L ∈ NC.

The theorem says that L is reducible to L′ if there exists a function f running in logarithmic
memory that maps L to L′. Reducibility in logarithmic memory is closed in the class NC.
Also, if L ≤L

m L′ and L′ ∈ NCi then L ∈ NCmax(i,2).

Proof We have the Boolean circuit for L′ and we need a Boolean circuit for L. The
Boolean circuit CL for L could be composed of two circuits Cf and CL′ , the first one would
be for computing f and the second circuit would accept L′. Therefore, we can construct
CL so that we apply Cf to the input and CL′to the output of Cf . As f runs in logarithmic
memory then Cf ∈ NC2 and thus Cf is with depth at most log2 of the input. Therefore,
the depth of CL is the depth of Cf plus the depth of CL′ . Thus, L ∈ NC.

From the theorem we see that if a P-complete problem belongs to NC, then P = NC. Then
all efficient problems can be parallelized and therefore P-complete problems are the most
difficult to parallelize.

9-2

3 Circuit Value Problem (CVP)

3.1 CVP and variations

Now we will view some P-complete problems.

The first problem: Given deterministic TM M , input x and number of steps 1n. Does
M accept x in at most n steps?
Every problem in P can be reduced to this problem. The reduction f from a language
L ∈ P is the following. Given x, f(x) is 〈M,x, 1p(|x|)〉, where M is a polynomial-time
DTM that recognizes L and p is a polynomial function that bounds the running time of M .
Parallelizing the solution to this problem is akin to finding a parallelization technique for
arbitrary programs (represented by the machine M).
The second problem: Given a Boolean circuit {0, 1}n → {0, 1}m, a n-bit string and
i ∈ {1, . . . ,m} . What is the i-th output of the circuit on that string? This is called the
Circuit Value Problem (CVP).
This problem is in a way analogous to SAT. SAT is NP-complete while this problem is
P-complete. CVP is solvable in linear time by evaluating all its nodes one by one. The
reduction from the previous problem is similar to the Cook-Levin reduction showing the
NP-completeness of SAT.
The third problem: Same as previous, but circuit may contain only AND- and OR-nodes.
This is called the Monotone CVP — MCVP.

Claim 3 It is possible to write down an arbitrary monotone function1 from {0, 1}n → {0, 1}
by using AND- and OR-nodes.

Proof Let there be a monotone function f : {0, 1}n → {0, 1} . Now when we insert
arguments x1, . . . , xn then we can write

f(x1, . . . , xn) = x1&f(1, x2, . . . , xn) ∨ ¬x1&f(0, x2, . . . , xn).

Now we have a function of n− 1 variables using AND/OR nodes and we could use this step
for induction if we could get rid of negation. Because we have a monotone function then
f(0, x2, . . . , xn) ≤ f(1, x2, . . . , xn). If x1 = false then the first half of the disjunction is false
and the second half is f(0, x2, . . . , xn). If x1 = true then the first half of the disjunction
is f(1, x2, . . . , xn) and the second half of disjunction is always a subset of the the first half
because ¬x1 = false. Therefore, we can remove ¬x1 from the function and the proof can
be completed by induction.

Reduction. We will show how to construct the reduction f for CV P → MCV P . If we
have a gate in the non-monotone circuit then for each wire in that gate we have two wires in
the monotone circuit and these wires always carry values that are negations of each other.
If we would have a wire that carries a value v in the non-monotone circuit then in the
monotone circuit there are two wires, where on the first wire is the value v and on the

1
false ≤ true. The order on tuples of booleans is defined componentwise

9-3

second wire is the value ¬v.
So, if we have an AND gate in the non-monotone circuit then in the monotone circuit there
are two gates with the same inputs, AND-gate and OR-gate. This comes from the De
Morgan’s laws. If we have an OR gate in the non-monotone circuit then its the other way
around. Finally, if we have a NOT-gate then the wires are swapped.

The fourth problem: Same as previous, but the fan-in and fan-out of each internal node
is 2, inputs go to and outputs come from OR-gates, and AND-s and OR-s alternate on each
path from input gate to output gate. Besides that the fan-out of input nodes is also 2. This
is called AM2CVP.

3.2 MCVP ≤L
m AM2CVP

We will transform MCVP to AM2CVP and in the process we will have to add input nodes
to the new circuit. There are many steps in this transformation and they have do be done
sequentially. Doing these steps has to be in logarithmic memory and therefore each of these
steps has to be done in logarithmic memory.

1. step. The inputs have to go to OR-nodes, therefore every initial input is doubled. I.e.
two new input nodes with the value of the initial input are connected to the OR-gate. This
can be done in logarithmic memory.

2. step. If there is an AND node then we will append an OR node to it with the OR node
having the input from the AND node. This is actually an identity transformation.

3. step. If there is a node with more than two outputs, i.e. more than two nodes are read-
ing the output, then the node will be expanded by adding OR-nodes so that each OR-node
will have one input and two outputs. Therefore, a tree of OR-nodes is created.

4. step. If there are nodes AND → AND then an OR-node is added so that we would
have AND → OR → AND. The same is done for OR-nodes, i.e. when there are nodes
OR → OR then an AND-node is added so that we would have OR → AND → OR.

5. step. If there is an OR-node with single input then we will add an extra input node.
The other input is an input node with value zero.

6. step. If there is an AND-node with single input then we will add an input from OR-node,
that gets input from two new input nodes. One of these new nodes has to have a value of one.

7. step. We will have to get two outputs for all nodes. At the moment all input nodes
have only one output. Now we will make two copies of the circuit, except the input nodes
and after this each input nodes gets two outputs, one for each of the copies. After this
step all other nodes have one or two outputs and if a node has one output then it has one
output in both copies. Therefore we will add a new output node. In case of an AND-
node with single input we will add an OR-node, which gets inputs from both copies of

9-4

the node. In the case of an OR-node we will have to add an AND-node first and after
that two new output OR-nodes, which get the second input from a new input node with a
value zero. Solving the single output problem for AND-,OR-nodes is shown on the Figure 1.

Figure 1: Adding the second output to AND-nodes and OR-nodes.

3.3 NANDCVP / NORCVP

NANDCVP is like CVP but all gates are NAND-s. NAND is an universal operation as all
other operations can be computed using NAND-s. NORCVP is the same but all gates are
NOR-s. As before, we want all inputs and internal nodes to have two outputs.

Theorem 4 AM2CV P ≤L
m NANDCV P.

Proof The idea is to complement all inputs and turn all gates to NAND-s.

3.4 Depth-first-search (DFS)

Given a directed graph G, where the outputs of each node are ordered and nodes themselves
are also ordered (think of the graph represented as an adjacency list). Also, two vertices
u and v are given. Depth-first traversal of the graph gives an ordering of the nodes. Is u

visited before v in the depth-first traversal of G? The next theorem shows that it is difficult
to parallelize this problem.

In NORCVP all nodes contain the operation NOR and have two inputs and two outputs.
We assume that when we are given NORCVP as a bitstring then the nodes are topologically
sorted, i.e. for each node its inputs are before the node.

9-5

Theorem 5 NORCV P ≤L
m DFS.

Proof Let C be a circuit consisting only of NOR-gates with fan-in and fan-out 2. Assume
its nodes are topologically sorted, all our reductions provide or preserve this. We are given
the circuit C and we will have to transform it into a graph. Let i be a node with inputs
i1, i2 that are smaller than i and outputs j1, j2 that are larger than i. A fragment of the
graph is displayed on the Figure 2.

Figure 2: A fragment of the DFS graph.

Traversing the graph starts from the enter of the first node, goes to the exit of the first
node, then goes to the enter of the second node and after that to the exit of the second
node and so on. Now we give some lemmas for traversing the graph.

Lemma 6 At the moment traversal is about to enter enter(i):

• s(i), t(i), out(i, 1), out(i, 2), exit(i), in(j1, i), in(j2, i) are untraversed.

• in(i, ik) is traversed iff the node ik evaluates true in the circuit.

• Nodes pointed to by the first outedges of in(i, ik) are traversed.

Lemma 7 If node i evaluates to true then s(i) is traversed before t(i). If node i evaluates
to false then t(i) is traversed before s(i).

9-6

Initialization

• There are nodes in(k, i) for each input node i and each node k that receives input
from i.

• All true inputs are chained together and traversed first.

• I.e. when we reach enter(k), the node in(k, i) has been traversed iff input i is true.

• Finally, we ask whether s(output) is traversed before or after t(output).

3.5 Alternating reachability (AGAP)

Given a directed graph G where each node is labeled with ∀ or ∃, and two nodes u, v. Does
apath(u, v) hold, where

• apath(x, x) holds for all nodes x.

• If x is labeled with ∃, then apath(x, y) if exists z, such that x → z and apath(z, y).

• If x is labeled with ∀, then apath(x, y) if for all z, where x → z, we have apath(z, y).

This is similar to alternating Turing machines. Besides that, actually the acronym AGAP
stands for alternating graph accessibility problem.

Theorem 8 MCV P ≤L
m AGAP.

Proof We are given circuit C, inputs x and output z. We want to know if the monotone
circuit evaluates to true. We will introduce two constant nodes 0 and 1 and use these for the
input instead of x. Now, let AND-nodes be labeled with ∀ and OR-nodes with ∃. Then all
edges should be reversed in order to move from the end to the beginning, i.e. start moving
from the output node z of the initial graph. We are interested if the input 1 reaches output
or not. We know that the OR-node is passed if one of its inputs is one and passing the
AND-node requires that both of its inputs are ones. That is why we label AND-nodes with
∀ and OR-nodes with ∃.

4 HORNSAT,UNIT,GEN,CFPARSE

4.1 HORNSAT

Recall that in HORNSAT there are variables and positive and negative literals. A Horn
clause is l1∨ l2∨ · · · ∨ ln, where at most one literal is positive. A Horn formula is a conjunc-
tion of Horn clauses. HORNSAT is the set of all satisfiable Horn formulas. HORNSAT is
P-complete.

Theorem 9 AGAP ≤L
m HORNSAT.

9-7

Proof We will try to construct function f that reduces AGAP to HORNSAT. We are
given graph G and we need to write it down using Horn formulas. Besides graph G we are
given nodes u, v and we will apply f to them, i.e. f(G, u, v). We will introduce variables
xi ≡ apath(i, v) that correspond to apath from i to v. Now we will try to write down the
graph using Horn formulas.

We have a Horn clause xv. If i is an existence node ∃ and from i we can get to node j, i.e.
i → j then xj ⇒ xi. If i is a for all node ∀ and i → j1, . . . , i → jk then xj1& . . .&xjk ⇒ xi.

We want to know if there is a path from u to v. For that we should write down a new Horn
clause ¬xu. If there is a path from u to v then the conjunction of all previous clauses and
¬xu??? is not satisfiable.

4.2 Unit resolution (UNIT)

The input to unit resolution is the same as the input to 3-CNF-SAT. 3-CNF-SAT means
that there is a conjunction of disjuncts and in every disjunct there are at most three lit-
erals. The resolution is one method to check if 3-CNF-SAT is satisfiable. For that we do
operations on the disjuncts and if we finally get an empty disjunct then 3-CNF-SAT is not
satisfiable and otherwise it is. This is because we consider an empty disjunct to be not
satisfiable.

If C = l1 ∨ · · · ∨ lm is a disjunct and l = ¬lj , then the unit resolution of C an l gives

l1 ∨ · · · ∨ lj−1 ∨ lj+1 ∨ · · · ∨ lm.

The name unit resolution comes from the fact that the second disjunct l = ¬lj is a single
literal. Given a set of disjuncts of size ≥ 3, is it possible to derive the empty disjunct from
the given set using unit resolution?

Theorem 10 CV P ≤L
m UNIT.

Proof The gates vi ≡ vj ∧ vk, vi ≡ vj ∨ vk and vi ≡ ¬vj can all be represented as
conjunctions of disjuncts of size at most 3. True inputs are represented as unit clauses, i.e.
every input is unit disjunct. If we would start to do the unit resolution on them then the
computation is similar to the way how CVP is evaluated.

4.3 Generability (GEN)

Given a set X, subset S ⊆ X, element x ∈ X and a binary operation • : X × X → X

(given as a table). If there are n elements in X then the size of the table is n2. Can x be
generated from S using •?

Theorem 11 UNIT ≤L
m GEN.

9-8

Proof A set of disjuncts D is given, i.e. we are given 3-CNF instance. Let X be the set
of all subdisjunctions of D (with 2,1 and 0 literals), plus an extra element ⊥. The extra
element is required because it might not be possible to apply unit resolution to all elements
and in the case that it is not possible the result is ⊥. We start by setting S = D. Let • be
unit resolution and let x be the empty disjunct. We start with the given disjuncts S and
try to get the empty disjunct.

4.4 Context-free parsing (CFPARSE)

The complexity of context-free parsing varies largely, depending on the fact whether there
are productions where on the right side are empty strings or not. If such productions do
not exist then context-free parsing is parallelizable and if such productions exist then it
is not. Context-free grammar contains non-terminals, starting symbol S that is a non-
terminal, terminals and productions that map a non-terminal to a string over terminal and
non-terminals. We start from S and after a production we get to a string. We can choose
a non-terminal from it, choose a production where the non-terminal is on the left side and
replace the non-terminal in the string with the right side of the production. The grammar
generates a language which consists of all words made of terminals which can be derived
using the productions.

Given a context-free grammar G = (N,T, P, s) and a word w. Does w ∈ L(G)?

Theorem 12 GEN ≤L
m CFPARSE.

Proof We are given the instance of the generability (X,S, •, x). From this we put together
a context-free grammar. Let N = X, T = {a}, s = x. The set of terminals is not important
to us, it could be an empty set as all the given elements are non-terminals. The starting
symbol is the one where we want to get to and the generating/productions corresponds to
the opposite to the operation, i.e. if the operation is s • t = r then the production will be
r → st. All elements that belong to the initial set S can be deleted — i.e. we have the
productions r → ε for r ∈ S.

We ask whether the empty word is generated by this grammar. So if starting from x

we can derive a word consisting of only elements of S then we can delete all elements of S
and so we get an empty word.

9-9

