
Circuit complexity
Non-uniform model of

computation

Boolean circuits

2 / 31

A Boolean circuit is a DAG, where

■ Each internal node v is labeled with a Boolean operation o(v) (of
small, fixed arity; typically 0, 1 or 2);

■ Each internal node v has arity(o(v)) incoming edges;

◆ The edges are ordered.

■ Each output node has a single incoming edge;

■ Input nodes are ordered;

■ Output nodes are ordered.

A Boolean circuit C with n inputs and m outputs defines a function
[[C]] : {0, 1}n → {0, 1}m. We mostly consider m = 1.

The complexity classes SIZE(T)

3 / 31

■ A family of circuits is {Cn}n∈N, where Cn is a circuit with n inputs
and 1 output.

■ The family is of size T : N → N if ∀n : |Cn| ≤ c · T (n).

■ A language L ⊆ {0, 1}∗ is in SIZE(T) if exists c and a family of
circuits {Cn}n∈N of size c · T , such that L ∩ {0, 1}n is accepted by
Cn.

■ P/poly =
⋃

c∈N SIZE(λn.n
c).

We call the circuit model of computation non-uniform because
computations on input size n can be absolutely different from
computations on some other input size n′.

Effects of non-uniformity

4 / 31

■ Exercise. L ∈ SIZE(λn.n · 2n) for any L ⊆ {0, 1}∗.

■ Let L = {x ∈ {0, 1}∗ |TM M|x| stops on input 1|x|}.

◆ Exercise. L is non-recursive.

◆ Exercise. L ∈ SIZE(const)

Are families of Boolean circuits a good model for efficient computation?

Uniformly generated circuits

5 / 31

■ A family of circuits {Cn}n∈N is uniform if there exists a TM M ,
such that M(1n) outputs Cn.

■ The family is poly-time uniform if the TM M works in polynomial
time.

■ The family is log-space uniform if the TM M works in logarithmic
space (in n).

◆ i.e. the size of Cn is still polynomial in n.

Uniformly generated circuits and class P

6 / 31

Theorem. A language L is accepted by a poly-time / log-space uniform
family of circuits iff L ∈ P.

Corollary. P ⊆ P/poly .

Turing machines that take advice

7 / 31

Let f, g : N → N. A language L belongs to the class DTIME(f)/g, if
there exist

■ a family of bit-strings {αn}n∈N, where αn ∈ {0, 1}g(n);

■ a deterministic Turing machine M working in time O(f)
(considering only the first argument)

such that for all n ∈ N and x ∈ {0, 1}n:

x ∈ L ⇔ M(x, αn) accepts .

Example. If L is unary, then L ∈ DTIME(const)/const.

Advice vs. circuits

8 / 31

Theorem. P/poly =
⋃

c,d∈NDTIME(nc)/nd.

Karp-Lipton theorem

9 / 31

Theorem. If SAT ∈ P/poly then PH = Σp
2.

Proof. We show that SAT ∈ P/poly implies Π2SAT ∈ Σp
2. Let {Cn}n∈N

be the poly-size circuit family recognizing SAT.
Recall that

Π2SAT = {〈~u,~v, ϕ(~u,~v)〉 | ∀~u∃~v : ϕ(~u,~v) = true} .

Also recall that SAT is self-reducible and the existence of {Cn}n∈N
implies the existence of poly-size circuit family {C ′

n}n∈N, such that

ϕ ∈ {0, 1}n is satisfiable ⇒ ϕ(C ′
n(ϕ)) = true .

Proof

10 / 31

■ If we’re not worried about size and order, then ∀u∃v : ϕ(u, v) is
equivalent to ∃f∀u : ϕ(u, f(u)).

■ Existence of poly-size {C ′
n}n∈N allows us to express f in polynomial

number of bits.

〈~u,~v, ϕ(~u,~v)〉 ∈ Π2SAT ⇔ ∃C ′ ∈ {0, 1}poly(|ϕ|)∀~u : ϕ(~u, C ′(ϕ(~u,~·))) = true

The problem in the right is in Σp
2.

Size hierarchy

11 / 31

Exercise. Most functions require large circuits.
More precisely: for a large enough n, all but exponentially small fraction
of functions {0, 1}n → {0, 1} requires a circuit of size at least 2n/(10n).

Theorem. If n < T (n) < T ′(n) < 2n/(100n) and T log T ∈ o(T ′), then
SIZE(T) (SIZE(T ′).

Proof

12 / 31

■ For every ℓ, there is a function fℓ : {0, 1}
ℓ → {0, 1} not

computable by a circuit of size 2ℓ/(10ℓ).

■ fℓ is computable by a circuit of size 2ℓ · (10ℓ).

■ Let s : N → N be such that

◆ 2s(n) · (10s(n)) ≤ T ′(n)

◆ 2s(n)/(10s(n)) ≥ T (n)

■ Let g : {0, 1}∗ → {0, 1} be the following

g(x) = fs(|x|)(lsbs(|x|)(x)) .

then g ∈ SIZE(T ′)\SIZE(T).

The class NC

13 / 31

Definition. L ∈ NCj (Nick’s class, after Nicholas John Pippenger) if it
can be decided by a log-space uniform family of circuits with depth
O(λn. logj n).

NC =
⋃

j∈N NCj.

The class NC is the model for efficient parallel computation.

■ A problem is efficiently parallelizable if it can be computed with a
polynomial number of processors in polylogarithmic time.

◆ This statement is somewhat less agreeable than “P models
efficient computation”.

Graph reachability is in NC2

14 / 31

(Boolean) matrix multiplication is in NC1. Hence transitive closure is in
NC2.

Reducibility in NC

15 / 31

Theorem. If L ≤L
m L′ and L′ ∈ NC then L ∈ NC.

(If L ≤L
m L′ and L′ ∈ NCi then L ∈ NCmax(i,2))

P-completeness

16 / 31

■ A problem in P is P-complete if every other problem in P is
log-space reducible to it.

■ The P-complete problems are the hardest to parallelize.

CVP and variations

17 / 31

■ Given M , x and 1n. Does M accept x in at most n steps?

■ Given a Boolean circuit {0, 1}n → {0, 1}m, an n-bit string and
i ∈ {1, . . . ,m}. What is the i-th output of the circuit on that
string? (Circuit Value Problem — CVP)

■ Same as previous, but circuit may contain only AND- and
OR-nodes. (Monotone CVP — MCVP).

■ Same as previous, but the fan-in and fan-out of each internal node
is 2, inputs go to and outputs come from OR-gates, and AND-s and
OR-s alternate on each path from input gate to output gate
(AM2CVP).

◆ Fan-out of input nodes is also 2.

MCVP ≤L
m AM2CVP

18 / 31

■ Input node → OR-node with fan-in 2; two new input nodes with
fan-out 1.

■ AND-node giving output → AND to OR to output.

■ Fan-out > 2 → fan-out tree of OR-nodes with fan-in 1 and fan-out
2.

■ AND → AND goes to AND → OR → AND. Same for OR-s.

■ OR-node with single input gets and extra input node as input.

■ AND-node with single input gets other input from OR-node, that
gets input from two input nodes.

■ Replicate the circuit as follows: . . .

Replication

19 / 31

■ Double all nodes, except inputs. In this way, inputs get fan-out 2.

■ Introduce fan-out to AND- and OR-nodes as follows.

&& V V

V &

V V

0

NANDCVP / NORCVP

20 / 31

■ NANDCVP — like CVP, but all gates are NAND-s, and the fan-out
of inputs and internal gates must be 2.

■ NORCVP — same, but all gates are NOR-s.

Theorem. AM2CVP ≤L
m NANDCVP.

Proof. Complement all inputs and turn all gates to NAND-s.

Exercise. How about NORCVP?

DFS

21 / 31

■ Given a directed graph G, where

◆ the outputs of each node are ordered;

◆ the nodes are also ordered,

and two vertices u and v. Is u visited before v in the depth-first
traversal of G?

Theorem. NORCVP ≤L
m DFS.

Proof. Let C be a circuit consisting only of NOR-gates with fan-in and
fan-out 2. Assume its nodes are topologically sorted (all our reductions
provide or preserve this).
Let i be a node with inputs i1, i2 and outputs j1, j2. A fragment of the
graph is:

22 / 31

enter(i) exit(i)

s(i)

1

2 2

1

1

in(j1, i) in(j2, i)

2

t(i)

2

2

1

enter(i+ 1)

1

1

1

in(i, i1) in(i, i2)
1 1

2

out(i, 1)
1

2

out(i, 2)

Lemmas

23 / 31

Lemma. At the moment the traversal is about to enter enter(i):

■ s(i), t(i), out(i, 1), out(i, 2), exit(i), in(j1, i), in(j2, i) are
untraversed.

■ in(i, ik) is traversed iff the node ik evaluates true in the circuit.

■ Nodes pointed to by the first outedges of in(i, ik) are traversed.

Lemma. If node i evaluates to true then s(i) is traversed before t(i). If
node i evaluates to false then t(i) is traversed before s(i).

Initialization

24 / 31

■ There are nodes in(k, i) for each input node i and each node k that
receives input from i.

■ All true inputs are chained together and traversed first.

■ I.e. when we reach enter(k), the node in(k, i) has been traversed
iff input i is true.

Finally, we ask whether s(output) is traversed before or after t(output).

Max-Flow parity (MAXFLOW⊕)

25 / 31

Given a directed graph G with source node s and sink node t. Also given
integer capacity c(e) ≥ 0 for each edge e. What is the parity of
maximum flow from s to t?

Theorem. AM2CVP ≤L
m MAXFLOW⊕.

Alternating reachability (AGAP)

26 / 31

■ Given a directed graph G where each node is labeled with ∀ or ∃,
and two nodes u, v. Does apath(u, v) hold, where

◆ apath(x, x) holds for all nodes x.

◆ If x is labeled with ∃, then apath(x, y) if exists z, such that
x → z and apath(z, y).

◆ If x is labeled with ∀, then apath(x, y) if for all z, where
x → z, we have apath(z, y).

Theorem. MCVP ≤L
m AGAP.

Proof

27 / 31

■ Given: circuit C, inputs x, output z.

■ Introduce two constant nodes 0 and 1; use those instead of the
inputs.

■ Let AND-nodes be labeled with ∀ and OR-nodes with ∃.

■ Reverse all edges.

■ apath(z, 1)?

HORNSAT

28 / 31

■ Recall: variable, literal (positive or negative).

■ A Horn clause is l1 ∨ l2 ∨ · · · ∨ ln, where at most one literal is
positive.

■ A Horn formula is a conjunction of Horn clauses.

HORNSAT — the set of all satisfiable Horn formulas.

Theorem. AGAP ≤L
m HORNSAT.

Unit resolution (UNIT)

29 / 31

■ If C = l1 ∨ · · · ∨ lm is a disjunct and l = ¬lj, then the unit
resolution of C and l gives

l1 ∨ · · · ∨ lj−1 ∨ lj+1 ∨ · · · ∨ lm .

Given a set of disjuncts (of size ≥ 3). Can the empty disjunct be derived
from those using unit resolution?

Theorem. CVP ≤L
m UNIT.

Proof. The gates vi ≡ vj ∧ vk, vi ≡ vj ∨ vk and vi ≡ vj can all be
represented as conjunctions of disjuncts of size at most 3. True inputs
are represented as unit clauses.

Generability (GEN)

30 / 31

Given a set X, subset S ⊆ X, element x ∈ X and a binary operation
• : X ×X → X (given as table). Can x be generated from S using •?

Theorem. UNIT ≤L
m GEN.

Proof. A set of disjuncts D is given.

■ Let X be the set of all subdisjuncts of D, plus an extra element ⊥.

■ Let S = D.

■ Let • be unit resolution (result is ⊥, if nonapplicable).

■ Let x be the empty disjunct.

Context-free parsing (CFPARSE)

31 / 31

Given a context-free grammar G = (N, T, P, s) and a word w. Does
w ∈ L(G)?

Theorem. GEN ≤L
m CFPARSE.

Proof. (X,S, •, x) is given. Let N = X, T = {a}, s = x. Let P
contain the following productions

■ r → st, where s • t = r;

■ r → ε for r ∈ S.

Let w be the empty word.

	Boolean circuits
	The complexity classes SIZE(T)
	Effects of non-uniformity
	Uniformly generated circuits
	Uniformly generated circuits and class ¶
	Turing machines that take advice
	Advice vs. circuits
	Karp-Lipton theorem
	Proof
	Size hierarchy
	Proof
	The class NC
	Graph reachability is in NC2
	Reducibility in NC
	¶-completeness
	CVP and variations
	MCVPLmAM2CVP
	Replication
	NANDCVP / NORCVP
	DFS
	
	Lemmas
	Initialization
	Max-Flow parity (MAXFLOW)
	Alternating reachability (AGAP)
	Proof
	HORNSAT
	Unit resolution (UNIT)
	Generability (GEN)
	Context-free parsing (CFPARSE)

