Circuit complexity
Non-uniform model of
computation

Boolean circuits

A Boolean circuit is a DAG, where

m Each internal node v is labeled with a Boolean operation o(v) (of
small, fixed arity; typically 0, 1 or 2);

m Each internal node v has arity(o(v)) incoming edges;

[0 The edges are ordered.

m Each output node has a single incoming edge;
m |Input nodes are ordered;
m Output nodes are ordered.

A Boolean circuit C' with n inputs and m outputs defines a function
[C] :{0,1}™ — {0,1}™. We mostly consider m = 1.

2 /31

The complexity classes SIZE(T')

m A family of circuits is {C), },.en, Where C,, is a circuit with n inputs
and 1 output.

m The family isof size T: N —- N if Vn: |C,| < c-T(n).

m A language L C {0,1}* is in SIZE(T) if exists ¢ and a family of
circuits {C), }pen of size ¢ - T, such that L N {0,1}" is accepted by
Ch.

m P/poly = ..y SIZE(An.n).

We call the circuit model of computation non-uniform because
computations on input size n can be absolutely different from
computations on some other input size n’.

3 /31

Effects of non-uniformity

m Exercise. L € SIZE(An.n -2") for any L C {0, 1}*.
m Let L ={z € {0,1}*| TM M, stops on input 11*}.
[0 Exercise. L is non-recursive.

0 Exercise. L € SIZE(const)

Are families of Boolean circuits a good model for efficient computation?

4 /31

Uniformly generated circuits

m A family of circuits {C,, } ,en is uniform if there exists a TM M,
such that M (1™) outputs C,.

m The family is poly-time uniform if the TM M works in polynomial
time.

m The family is log-space uniform if the TM M works in logarithmic
space (in n).

[0 i.e. the size of €, is still polynomial in n.

5/ 31

Uniformly generated circuits and class P

Theorem. A language L is accepted by a poly-time / log-space uniform
family of circuits iff L € P.

Corollary. P C P/poly.

6 / 31

Turing machines that take advice

Let f,¢g: N — N. A language L belongs to the class DTIME(f)/g, if
there exist

m a family of bit-strings {a, }nen, Where a;,, € {0,119

m a deterministic Turing machine M working in time O(f)
(considering only the first argument)

such that for all n € N and x € {0,1}™:
r e L < M(x,a,) accepts .

Example. If L is unary, then L. € DTIME(const)/const.

7 /31

Advice vs. circuits

Theorem. P/poly =, 4en DTIME(n¢)/n®.

8 / 31

Karp-Lipton theorem

Theorem. If SAT € P/poly then PH = 3.

Proof. We show that SAT € P/poly implies II,SAT € 4. Let {C), }en
be the poly-size circuit family recognizing SAT.
Recall that

IL,SAT = { (@, 7, o(@, 7)) | V@37 : (@, T) = true} .

Also recall that SAT is self-reducible and the existence of {C), }..en
implies the existence of poly-size circuit family {C” },.cn, such that

© € {0,1}" is satisfiable = ¢(C" (p)) = true .

9 /31

Proof

m If we're not worried about size and order, then Yu3dv : p(u,v) is
equivalent to IfVu : p(u, f(u)).

m Existence of poly-size {C’ },.cn allows us to express f in polynomial
number of bits.

(@0, T, (i, 7)) € IIL,SAT < 3C" € {0, 1}y : (i, C'((i,7))) = true
The problem in the right is in X3.

10 / 31

Size hierarchy

Exercise. Most functions require large circuits.
More precisely: for a large enough n, all but exponentially small fraction
of functions {0,1}" — {0, 1} requires a circuit of size at least 2"/(10n).

Theorem. If n < T(n) <T'(n) < 2"/(100n) and T'logT € o(T"), then
SIZE(T) C SIZE(T").

11 /31

Proof

For every ¢, there is a function f,: {0,1}* — {0,1} not
computable by a circuit of size 2¢/(10¢).

fe is computable by a circuit of size 2° - (104).
Let s : N — N be such that

0 25 . (10s(n)) < T"(n)

0 25 /(10s(n)) > T'(n)

Let g : {0,1}* — {0, 1} be the following

g(x) = fs(|x|)(135.s(|x|)($)) :

then g € SIZE(T")\SIZE(T).

12 /31

The class NC

Definition. L € NC; (Nick's class, after Nicholas John Pippenger) if it
can be decided by a log-space uniform family of circuits with depth

O(An.log’ n).
NC = UjeN NC,;.
The class NC is the model for efficient parallel computation.

m A problem is efficiently parallelizable if it can be computed with a
polynomial number of processors in polylogarithmic time.

[0 This statement is somewhat less agreeable than “P models
efficient computation”.

13 / 31

Graph reachability is in NC,

(Boolean) matrix multiplication is in NC;. Hence transitive closure is in
NC,.

14 / 31

Reducibility in NC

Theorem. If L < [/ and L’ € NC then L € NC.

(lf L SII;l L' and L' € NCZ then L € NCmax(i,Q))

15 / 31

P-completeness

m A problem in P is P-complete if every other problem in P is
log-space reducible to it.

m [he P-complete problems are the hardest to parallelize.

16 / 31

CVP and variations

Given M, x and 1". Does M accept x in at most n steps?

Given a Boolean circuit {0,1}™ — {0,1}™, an n-bit string and
i € {1,...,m}. What is the i-th output of the circuit on that
string? (Circuit Value Problem — CVP)

Same as previous, but circuit may contain only AND- and
OR-nodes. (Monotone CVP — MCVP).

Same as previous, but the fan-in and fan-out of each internal node
Is 2, inputs go to and outputs come from OR-gates, and AND-s and

OR-s alternate on each path from input gate to output gate
(AM2CVP).

[0 Fan-out of input nodes is also 2.

17 / 31

MCVP <t AM2CVP

Input node — OR-node with fan-in 2; two new input nodes with
fan-out 1.

AND-node giving output — AND to OR to output.

Fan-out > 2 — fan-out tree of OR-nodes with fan-in 1 and fan-out
2.

AND — AND goes to AND — OR — AND. Same for OR-s.
OR-node with single input gets and extra input node as input.

AND-node with single input gets other input from OR-node, that
gets input from two input nodes.

Replicate the circuit as follows: ...

18 / 31

Replication

m Double all nodes, except inputs. In this way, inputs get fan-out 2.

m Introduce fan-out to AND- and OR-nodes as follows.

VRV \/ K,

N g
i 2~ O\

i

19 / 31

NANDCVP / NORCVP

m NANDCVP — like CVP, but all gates are NAND-s, and the fan-out
of inputs and internal gates must be 2.

m NORCVP — same, but all gates are NOR-s.

Theorem. AM2CVP <l NANDCVP.

Proof. Complement all inputs and turn all gates to NAND-s.

Exercise. How about NORCVP?

20 / 31

DFS

m Given a directed graph G, where

[0 the outputs of each node are ordered:;

[1 the nodes are also ordered,

and two vertices u and v. Is u visited before v in the depth-first
traversal of G7

Theorem. NORCVP <! DFS.

Proof. Let C' be a circuit consisting only of NOR-gates with fan-in and
fan-out 2. Assume its nodes are topologically sorted (all our reductions
provide or preserve this).

Let 7 be a node with inputs 71,79 and outputs 71, j2. A fragment of the
graph is:

21 /31

enter(i+ 1)

22 /31

Lemmas

Lemma. At the moment the traversal is about to enter enter(i):

m s(i), t(2), out(z, 1), out(i,2), exit(7), in(j1,2), in(ja,1) are
untraversed.

m in(i, 1) is traversed iff the node 75 evaluates true in the circuit.
m Nodes pointed to by the first outedges of in(i,iy) are traversed.

Lemma. If node i evaluates to true then s(¢) is traversed before ¢(7). If
node ¢ evaluates to false then ¢(7) is traversed before s(7).

23 / 31

Initialization

m There are nodes in(k,) for each input node i and each node k that
receives input from 1.

m All true inputs are chained together and traversed first.

m |.e. when we reach enter(k), the node in(k,) has been traversed
Iff input ¢ is true.

Finally, we ask whether s(output) is traversed before or after t(output).

24 / 31

Max-Flow parity (MAXFLOW®)

Given a directed graph G with source node s and sink node ¢t. Also given

integer capacity c(e) > 0 for each edge e. What is the parity of
maximum flow from s to t7

Theorem. AM2CVP <l MAXFLOW®.

25 / 31

Alternating reachability (AGAP)

m Given a directed graph GG where each node is labeled with V or 3,

and two nodes u, v. Does apath(u,v) hold, where

O apath(x,x) holds for all nodes .

O If z is labeled with 3, then apath(z,y) if exists z, such that
r — z and apath(z,y).

O If z is labeled with V, then apath(x,y) if for all z, where
r — z, we have apath(z,y).

Theorem. MCVP <l AGAP.

26 / 31

Proof

Given: circuit C, inputs x, output z.

Introduce two constant nodes 0 and 1; use those instead of the
Inputs.

Let AND-nodes be labeled with ¥V and OR-nodes with 4.
Reverse all edges.

apath(z,1)7?

27 / 31

HORNSAT

m Recall: variable, literal (positive or negative).

m A Horn clauseisl{ Vis VV---V [, where at most one literal is
positive.

m A Horn formula is a conjunction of Horn clauses.

HORNSAT — the set of all satisfiable Horn formulas.

Theorem. AGAP <l HORNSAT.

28 / 31

Unit resolution (UNIT)

m [fC=1[V---Vi,isadisjunct and [= —[;, then the unit
resolution of C' and [gives

ll\/"'\/lj_l\/lj_|_1\/"'\/lm .

Given a set of disjuncts (of size > 3). Can the empty disjunct be derived
from those using unit resolution?

Theorem. CVP < UNIT.

Proof. The gates v; = v; A vy, v; =v; Vv and v; = v; can all be
represented as conjunctions of disjuncts of size at most 3. True inputs
are represented as unit clauses.

29 / 31

Generability (GEN)

Given a set X, subset S C X, element z € X and a binary operation
o : X x X — X (given as table). Can z be generated from S using e?

Theorem. UNIT < GEN.

Proof. A set of disjuncts D is given.

m Let X be the set of all subdisjuncts of D, plus an extra element L.
mlet S=D.
m Let o be unit resolution (result is L, if nonapplicable).

m Let £ be the empty disjunct.

30 / 31

Context-free parsing (CFPARSE)

Given a context-free grammar G = (N, T, P, s) and a word w. Does
w € L(G)?

Theorem. GEN <L CFPARSE.

Proof. (X,S,e) isgiven. Let N =X, T ={a}, s=x. Let P
contain the following productions

mr — st, where set =1
mr—cforres.

Let w be the empty word.

31 /31

	Boolean circuits
	The complexity classes SIZE(T)
	Effects of non-uniformity
	Uniformly generated circuits
	Uniformly generated circuits and class ¶
	Turing machines that take advice
	Advice vs. circuits
	Karp-Lipton theorem
	Proof
	Size hierarchy
	Proof
	The class NC
	Graph reachability is in NC2
	Reducibility in NC
	¶-completeness
	CVP and variations
	MCVPLmAM2CVP
	Replication
	NANDCVP / NORCVP
	DFS
	
	Lemmas
	Initialization
	Max-Flow parity (MAXFLOW)
	Alternating reachability (AGAP)
	Proof
	HORNSAT
	Unit resolution (UNIT)
	Generability (GEN)
	Context-free parsing (CFPARSE)

