Circuit complexity Non-uniform model of computation

Boolean circuits

A Boolean circuit is a DAG, where

■ Each internal node v is labeled with a Boolean operation o(v) (of small, fixed arity; typically 0, 1 or 2);

Each internal node v has $\operatorname{arity}(o(v))$ incoming edges;

◆ The edges are ordered.

Each output node has a single incoming edge;

- Input nodes are ordered;
- Output nodes are ordered.

A Boolean circuit C with n inputs and m outputs defines a function $\llbracket C \rrbracket : \{0,1\}^n \to \{0,1\}^m$. We mostly consider m = 1.

The complexity classes $\mathsf{SIZE}(T)$

- A family of circuits is $\{C_n\}_{n \in \mathbb{N}}$, where C_n is a circuit with n inputs and 1 output.
- The family is of size $T : \mathbb{N} \to \mathbb{N}$ if $\forall n : |C_n| \leq c \cdot T(n)$.
- A language $L \subseteq \{0,1\}^*$ is in SIZE(T) if exists c and a family of circuits $\{C_n\}_{n\in\mathbb{N}}$ of size $c \cdot T$, such that $L \cap \{0,1\}^n$ is accepted by C_n .

$$\blacksquare \mathsf{P}/poly = \bigcup_{c \in \mathbb{N}} \mathsf{SIZE}(\lambda n.n^c).$$

We call the circuit model of computation non-uniform because computations on input size n can be absolutely different from computations on some other input size n'.

Effects of non-uniformity

Exercise.
$$L \in SIZE(\lambda n.n \cdot 2^n)$$
 for any $L \subseteq \{0, 1\}^*$.

• Let $L = \{x \in \{0, 1\}^* | \mathsf{TM} M_{|x|} \text{ stops on input } 1^{|x|} \}.$

- ◆ **Exercise.** *L* is non-recursive.
- **Exercise.** $L \in SIZE(const)$

Are families of Boolean circuits a good model for efficient computation?

Uniformly generated circuits

- A family of circuits $\{C_n\}_{n \in \mathbb{N}}$ is uniform if there exists a TM M, such that $M(1^n)$ outputs C_n .
- The family is poly-time uniform if the TM M works in polynomial time.
- The family is log-space uniform if the TM *M* works in logarithmic space (in *n*).
 - i.e. the size of C_n is still polynomial in n.

Uniformly generated circuits and class P

Theorem. A language L is accepted by a poly-time / log-space uniform family of circuits iff $L \in P$.

Corollary. $P \subseteq P/poly$.

Turing machines that take advice

Let $f, g: \mathbb{N} \to \mathbb{N}$. A language L belongs to the class $\mathsf{DTIME}(f)/g$, if there exist

- a family of bit-strings $\{\alpha_n\}_{n\in\mathbb{N}}$, where $\alpha_n\in\{0,1\}^{g(n)}$;
- a deterministic Turing machine M working in time O(f) (considering only the first argument)

such that for all $n \in \mathbb{N}$ and $x \in \{0, 1\}^n$:

 $x \in L \Leftrightarrow M(x, \alpha_n)$ accepts .

Example. If L is unary, then $L \in \mathsf{DTIME}(const)/const$.

Advice vs. circuits

Theorem. $\mathsf{P}/poly = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c)/n^d$.

Karp-Lipton theorem

Theorem. If $SAT \in P/poly$ then $PH = \Sigma_2^p$.

Proof. We show that $SAT \in P/poly$ implies $\Pi_2 SAT \in \Sigma_2^p$. Let $\{C_n\}_{n \in \mathbb{N}}$ be the poly-size circuit family recognizing SAT. Recall that

$$\Pi_2 \mathsf{SAT} = \{ \langle \vec{u}, \vec{v}, \varphi(\vec{u}, \vec{v}) \rangle \, | \, \forall \vec{u} \exists \vec{v} : \varphi(\vec{u}, \vec{v}) = \mathsf{true} \}$$

Also recall that SAT is self-reducible and the existence of $\{C_n\}_{n \in \mathbb{N}}$ implies the existence of poly-size circuit family $\{C'_n\}_{n \in \mathbb{N}}$, such that

$$\varphi \in \{0,1\}^n$$
 is satisfiable $\Rightarrow \varphi(C_n'(\varphi)) = \mathsf{true}$.

Proof

- If we're not worried about size and order, then $\forall u \exists v : \varphi(u, v)$ is equivalent to $\exists f \forall u : \varphi(u, f(u))$.
- Existence of poly-size $\{C'_n\}_{n\in\mathbb{N}}$ allows us to express f in polynomial number of bits.

 $\langle \vec{u}, \vec{v}, \varphi(\vec{u}, \vec{v}) \rangle \in \Pi_2 \mathsf{SAT} \Leftrightarrow \exists C' \in \{0, 1\}^{poly(|\varphi|)} \forall \vec{u} : \varphi(\vec{u}, C'(\varphi(\vec{u}, \vec{\cdot}))) = \mathsf{true}$

The problem in the right is in Σ_2^p .

Size hierarchy

Exercise. Most functions require large circuits.

More precisely: for a large enough n, all but exponentially small fraction of functions $\{0,1\}^n \rightarrow \{0,1\}$ requires a circuit of size at least $2^n/(10n)$.

Theorem. If $n < T(n) < T'(n) < 2^n/(100n)$ and $T \log T \in o(T')$, then $SIZE(T) \subsetneq SIZE(T')$.

Proof

- For every ℓ , there is a function $f_{\ell} : \{0,1\}^{\ell} \to \{0,1\}$ not computable by a circuit of size $2^{\ell}/(10\ell)$.
- f_{ℓ} is computable by a circuit of size $2^{\ell} \cdot (10\ell)$.
- \blacksquare Let $s:\mathbb{N}\to\mathbb{N}$ be such that

• Let $g: \{0,1\}^* \to \{0,1\}$ be the following

$$g(x) = f_{s(|x|)}(lsb_{s(|x|)}(x))$$
.

then $g \in SIZE(T') \setminus SIZE(T)$.

The class NC

Definition. $L \in NC_j$ (Nick's class, after Nicholas John Pippenger) if it can be decided by a log-space uniform family of circuits with depth $O(\lambda n. \log^j n)$.

 $\mathsf{NC} = \bigcup_{j \in \mathbb{N}} \mathsf{NC}_j.$

The class NC is the model for efficient parallel computation.

- A problem is efficiently parallelizable if it can be computed with a polynomial number of processors in polylogarithmic time.
 - This statement is somewhat less agreeable than "P models efficient computation".

Graph reachability is in NC_2

(Boolean) matrix multiplication is in NC₁. Hence transitive closure is in NC₂.

Reducibility in NC

Theorem. If $L \leq_{\mathrm{m}}^{\mathrm{L}} L'$ and $L' \in \mathsf{NC}$ then $L \in \mathsf{NC}$.

(If $L \leq_{\mathrm{m}}^{\mathrm{L}} L'$ and $L' \in \mathsf{NC}_i$ then $L \in \mathsf{NC}_{\max(i,2)}$)

P-completeness

- A problem in P is P-complete if every other problem in P is log-space reducible to it.
- The P-complete problems are the hardest to parallelize.

CVP and variations

Given M, x and 1^n . Does M accept x in at most n steps?

- Given a Boolean circuit $\{0,1\}^n \rightarrow \{0,1\}^m$, an *n*-bit string and $i \in \{1,\ldots,m\}$. What is the *i*-th output of the circuit on that string? (Circuit Value Problem CVP)
- Same as previous, but circuit may contain only AND- and OR-nodes. (Monotone CVP — MCVP).
- Same as previous, but the fan-in and fan-out of each internal node is 2, inputs go to and outputs come from OR-gates, and AND-s and OR-s alternate on each path from input gate to output gate (AM2CVP).
 - ◆ Fan-out of input nodes is also 2.

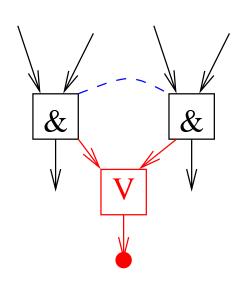
$\mathsf{MCVP} \leq^{\mathrm{L}}_{\mathrm{m}} \mathsf{AM2CVP}$

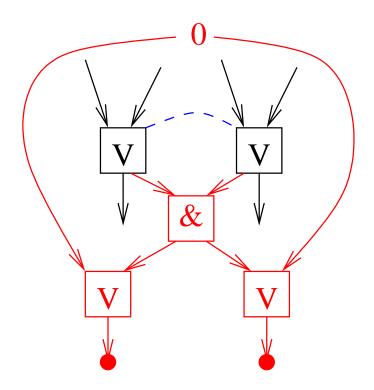
- Input node \rightarrow OR-node with fan-in 2; two new input nodes with fan-out 1.
- \blacksquare AND-node giving output \rightarrow AND to OR to output.
- Fan-out > 2 → fan-out tree of OR-nodes with fan-in 1 and fan-out 2.
- \blacksquare AND \rightarrow AND goes to AND \rightarrow OR \rightarrow AND. Same for OR-s.
- OR-node with single input gets and extra input node as input.
- AND-node with single input gets other input from OR-node, that gets input from two input nodes.
- Replicate the circuit as follows: ...

Replication

■ Double all nodes, except inputs. In this way, inputs get fan-out 2.

■ Introduce fan-out to AND- and OR-nodes as follows.





NANDCVP / NORCVP

■ NANDCVP — like CVP, but all gates are NAND-s, and the fan-out of inputs and internal gates must be 2.

■ NORCVP — same, but all gates are NOR-s.

Theorem. AM2CVP \leq_{m}^{L} NANDCVP.

Proof. Complement all inputs and turn all gates to NAND-s.

Exercise. How about NORCVP?

DFS

 \blacksquare Given a directed graph G, where

♦ the outputs of each node are ordered;

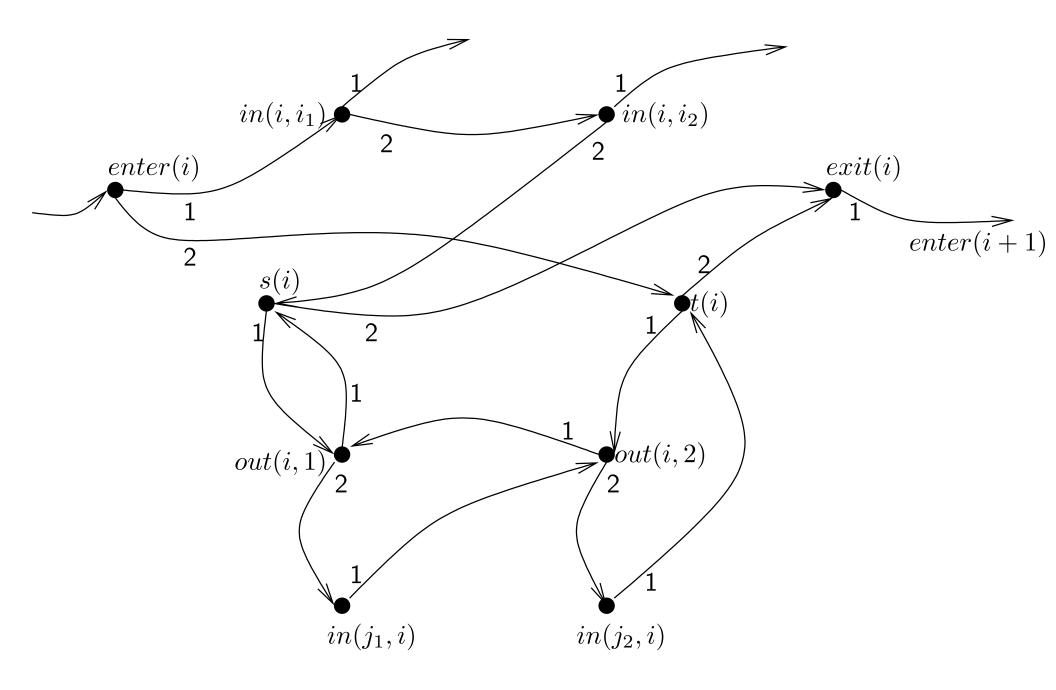
♦ the nodes are also ordered,

and two vertices u and v. Is u visited before v in the depth-first traversal of G?

Theorem. NORCVP \leq_{m}^{L} DFS.

Proof. Let C be a circuit consisting only of NOR-gates with fan-in and fan-out 2. Assume its nodes are topologically sorted (all our reductions provide or preserve this).

Let *i* be a node with inputs i_1, i_2 and outputs j_1, j_2 . A fragment of the graph is:



Lemmas

Lemma. At the moment the traversal is about to enter enter(i):

- s(i), t(i), out(i, 1), out(i, 2), exit(i), $in(j_1, i)$, $in(j_2, i)$ are untraversed.
- \blacksquare $in(i, i_k)$ is traversed iff the node i_k evaluates true in the circuit.
- Nodes pointed to by the first outedges of $in(i, i_k)$ are traversed.

Lemma. If node *i* evaluates to true then s(i) is traversed before t(i). If node *i* evaluates to false then t(i) is traversed before s(i).

Initialization

- There are nodes in(k, i) for each input node i and each node k that receives input from i.
- All true inputs are chained together and traversed first.
- I.e. when we reach enter(k), the node in(k, i) has been traversed iff input i is true.

Finally, we ask whether s(output) is traversed before or after t(output).

Max-Flow parity (MAXFLOW⊕)

Given a directed graph G with source node s and sink node t. Also given integer capacity $c(e) \ge 0$ for each edge e. What is the parity of maximum flow from s to t?

Theorem. AM2CVP \leq_{m}^{L} MAXFLOW \oplus .

Alternating reachability (AGAP)

■ Given a directed graph G where each node is labeled with ∀ or ∃, and two nodes u, v. Does apath(u, v) hold, where

- apath(x, x) holds for all nodes x.
- If x is labeled with \exists , then apath(x, y) if exists z, such that $x \rightarrow z$ and apath(z, y).
- If x is labeled with \forall , then apath(x, y) if for all z, where $x \rightarrow z$, we have apath(z, y).

Theorem. MCVP \leq_{m}^{L} AGAP.

Proof

Given: circuit C, inputs x, output z.

- Introduce two constant nodes 0 and 1; use those instead of the inputs.
- \blacksquare Let AND-nodes be labeled with \forall and OR-nodes with \exists .
- Reverse all edges.
- \blacksquare apath(z, 1)?

HORNSAT

■ Recall: variable, literal (positive or negative).

- A Horn clause is $l_1 \vee l_2 \vee \cdots \vee l_n$, where at most one literal is positive.
- A Horn formula is a conjunction of Horn clauses.

HORNSAT — the set of all satisfiable Horn formulas.

Theorem. AGAP \leq_{m}^{L} HORNSAT.

Unit resolution (UNIT)

If $C = l_1 \lor \cdots \lor l_m$ is a disjunct and $l = \neg l_j$, then the unit resolution of C and l gives

$$l_1 \vee \cdots \vee l_{j-1} \vee l_{j+1} \vee \cdots \vee l_m$$
.

Given a set of disjuncts (of size ≥ 3). Can the empty disjunct be derived from those using unit resolution?

Theorem. $\mathsf{CVP} \leq^{\mathrm{L}}_{\mathrm{m}} \mathsf{UNIT}.$

Proof. The gates $v_i \equiv v_j \wedge v_k$, $v_i \equiv v_j \vee v_k$ and $v_i \equiv v_j$ can all be represented as conjunctions of disjuncts of size at most 3. True inputs are represented as unit clauses.

Generability (GEN)

Given a set X, subset $S \subseteq X$, element $x \in X$ and a binary operation • : $X \times X \to X$ (given as table). Can x be generated from S using •?

Theorem. UNIT \leq_m^L GEN.

Proof. A set of disjuncts D is given.

• Let X be the set of all subdisjuncts of D, plus an extra element \perp .

 $\blacksquare \text{ Let } S = D.$

- Let be unit resolution (result is \bot , if nonapplicable).
- \blacksquare Let x be the empty disjunct.

Context-free parsing (CFPARSE)

Given a context-free grammar G = (N, T, P, s) and a word w. Does $w \in L(G)$?

Theorem. GEN \leq_{m}^{L} CFPARSE.

Proof. (X, S, \bullet, x) is given. Let N = X, $T = \{a\}$, s = x. Let P contain the following productions

•
$$r \to st$$
, where $s \bullet t = r$;

$$\blacksquare \ r \to \varepsilon \text{ for } r \in S.$$

Let w be the empty word.