
Polynomial reducibility. The

class NP

Recall: TM Configurations

2 / 23

A configuration of a TM with k tapes, the tape symbol set Γ, and state
set Q is

〈q;w1, . . . , wk; p1, . . . , pk〉, where

■ q ∈ Q is the current state of the TM;

■ wi ∈ Γ∗ · {�ω} is the contents of the i-th tape.

◆ wi consists of a finite sequence of elements of Γ, followed by
infinitely many �-s.

■ pi ∈ N is the position of the i-th head. Let leftmost position be 1.

Let CONF
k
Γ,Q be the set of all such configurations.

Recall: TM computations

3 / 23

A TM M = (Γ, Q, δ, q0, QF) defines a relation (actually, a partial

function)
M
→ on CONF

k
Γ,Q.

〈q;w1, . . . , wk; p1, . . . , pk〉
M
→ 〈q′;w1, w

′
2, . . . , w

′
k; p

′
1, . . . , p

′
k〉 iff

■ q 6∈ QF

■ γi = wi[pi]

■ (q′; γ′
2, . . . , γ

′
k; s1, . . . , sk) = δ(q; γ1, . . . , γk)

■ w′
i = wi[pi 7→ γ′

i]

■ p′i = max(1, pi + si)

Configurations and computation steps as a

graph

4 / 23

Given M with k tapes, tape alphabet Γ and set of states Q, we may
consider a directed graph:

■ Set of vertices is the set of configurations CONF
k
Γ,Q.

■ An edge goes from configuration C to configuration C ′ iff C
M
→ C ′.

Properties

■ Any configuration C has at most one outgoing edge.

■ If M accepts a language L in time T , then for any x ∈ {0, 1}∗, the
path starting in the starting configuration corresponding to x has
length bounded by T (|x|).

Nondeterministic Turing Machines

5 / 23

■ deterministic transition function:

δ : Q× Γk → Q× Γk−1 ×Movek

■ nondeterministic transition relation

δ ⊆
(

Q× Γk
)

×
(

Q× Γk−1 ×Movek
)

■ (all other components of a TM remain the same)

In the computation graph, a configuration may have more than one
outgoing edge.

NTM accepting a language

6 / 23

An NTM M accepts a language L ⊆ {0, 1}∗ in time T if for all x ∈ L,
there exists a path of length at most T (|x|) in the computation graph of
M from the starting configuration for x to some accepting configuration.

■ What about the length of other paths from this starting
configuration?

■ What about the length of paths from starting configuration for
some y 6∈ L?

We choose to not put any restrictions on them.

Exercise. Show that if an NTM M accepts the language L in time T ,
then exists NTM M ′ that accepts L and where all path from starting
configurations have length at most O(T).

Non-deterministic RAM

7 / 23

■ Has nondeterministic choice operation T ← {0, 1}.

◆ The value of the register T will be nondeterministically chosen
as 0 or 1.

◆ The configuration of RAM where this instruction is executed
will have two successors in the RAM’s computation graph.

NRAM-s and NTM-s can simulate each other without much loss in
efficiency.

classes NTIME and NP

8 / 23

■ Let f : N→ N

■ The class NTIME(f) ⊆ 2{0,1}
∗

is the set of all languages L, where

◆ exists g : N→ N, such that

◆ exists NTM M that accepts L in time g, and

◆ g ∈ O(f).

NP =
⋃

c∈N

NTIME(λn.nc)

If we replaced “NTM” with “NRAM”, the class NP would stay the same.

NP as a class of verification problems

9 / 23

Theorem. L ∈ NP iff

■ there exists a DTM M and a polynomial p, such that

◆ x ∈ L

iff

◆ ∃y ∈ {0, 1}∗ with |y| ≤ p(|x|), such that

◆ M(x, y) accepts in at most p(|x|) steps.

y may be seen as the certificate that x ∈ L.

Examples

10 / 23

Many searching problems.

■ Does a graph G have a clique of size at least k?

■ Does a boolean formula with variables have a satisfying assignment
to those variables?

■ Does a weighted graph have a traveling salesman tour of length at
most k?

■ Is a number n composite?

■ Can the vertices of a graph be colored with three colors?

■ Are two graphs (given e.g. by their adjacency lists) isomorphic?

■ Do the vertices u and v of some graph belong to the same
connected component?

Relation between P and NP

11 / 23

Theorem. P ⊆ NP ⊆
⋃

c∈N DTIME(2n
c

).

■ Left inclusion: every DTM is a NTM.

■ Right inclusion: using time 2O(p(n)) we can check every certificate of
length p(n).

Right inclusion in more general form:
Theorem. NTIME(f) ⊆

⋃

c∈N DTIME(λn.cf(n)).

Polynomial reducibility

12 / 23

A language L is polynomially [many-one] reducible to a language L′ if

■ exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗,
such that

■ for all x ∈ {0, 1}∗

■ x ∈ L iff f(x) ∈ L′.

Denote L ≤P
m L′.

■ we think f as “easily” computable.

■ Hence, if we know how to test membership in L′, we also know how
to test membership in L.

■ We can say that membership problem for L′ is at least as hard as
membership problem for L.

Properties of polynomial reducibility.

13 / 23

■ If L1 ≤
P
m L2 and L2 ≤

P
m L3 then L1 ≤

P
m L3

■ If L1 ≤
P
m L2 and L2 ∈ P then L1 ∈ P

■ If L1 ≤
P
m L2 and L2 ∈ NP then L1 ∈ NP

For a language L ⊆ {0, 1}∗ denote Lc = {0, 1}∗\L.

■ If L1 ≤
P
m L2 then L1

c ≤P
m L2

c.

NP-hardness and NP-completeness

14 / 23

■ A language L is NP-hard if for all L′ ∈ NP we have L′ ≤P
m L.

■ A language L is NP-complete if L is NP-hard and L ∈ NP.

■ If a language L is NP-hard and L ∈ P then P = NP.

■ If a language L is NP-complete then L ∈ P if and only if P = NP.

Existence of NP-complete languages

15 / 23

Theorem. There exist NP-complete languages.

Proof. Consider the following language. We show that it is
NP-complete.

L = {〈M,x, 1n〉 |NTM M accepts x in at most n steps}

L is in NP. The certificate consists of the choices M must make to
accept x.

L is NP-hard.

■ Let L′ ∈ NP. Let M ′ be a NTM that accepts L′ in time T .

■ Let f(x) = 〈M ′, x, 1T (|x|)〉. This f shows that L′ ≤P
m L.

SAT

16 / 23

■ A boolean formula over variables u1, . . . , un consists of those
variables and the logical operators ∨, ∧, ¬,. . . connecting them.

◆ Let BF be the set of all boolean formulas.

■ A valuation of u1, . . . , un is a mapping from {u1, . . . , un} to
{true, false}.

■ A boolean formula evaluates to true for no, some, or all valuations
of u1, . . . , un.

◆ u1 ∧ ¬u1 is unsatisfiable;

◆ (u1 ∧ u2) ∨ (u2 ∧ ¬u3) is satisfiable;

◆ ((u1 → u2)→ u1)→ u1 is tautology.

■ SAT is the language {ϕ ∈ BF |ϕ is satisfiable}.

CNFSAT and k-CNFSAT

17 / 23

■ A literal is either a boolean variable or its negation.

■ A disjunct is l1 ∨ l2 ∨ · · · ∨ lr, where l1, . . . , lr are literals.

■ A boolean formula is in conjuctive normal form if it is of the form
D1 ∧D2 ∧ · · · ∧Dm, where D1, . . . , Dm are disjuncts.

◆ Let CNF be the language of all boolean formulas in conjuctive
normal form.

◆ Let k-CNF be the language of all boolean formulas in
conjuctive normal form, where no disjunct has more than k

literals.

■ CNFSAT is the language {ϕ ∈ CNF |ϕ is satisfiable}.

■ k-CNFSAT is the language {ϕ ∈ k-CNF |ϕ is satisfiable}.

Reducibility of SAT and CNFSAT

18 / 23

Theorem. If k ≥ 3 then SAT ≤P
m k-CNFSAT ≤P

m CNFSAT ≤P
m SAT.

We show SAT ≤P
m 3-CNFSAT, the rest is trivial.

SAT is NP-complete

19 / 23

Theorem. SAT is NP-complete.

This result used to be known as Cook’s theorem. Now it is more
commonly known as Cook-Levin theorem.

■ Stephen Cook. The complexity of theorem proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory of
Computing (STOC). pp. 151–158, 1971.

■ Leonid Levin. Universal’nye zadachi perebora. Problemy Peredachi
Informatsii 9(3):265–266, 1973.

Proof. SAT ∈ NP is trivial.

Succinctly given graphs and SAT

20 / 23

■ Let u1, . . . , un be boolean variables. A directed graph can be
defined as follows:

◆ The vertices of the graph are the valuations of u1, . . . , un

satisfying a boolean formula S(u1, . . . , un).

◆ The edges are given by a boolean formula
R(u1, . . . , un, u

′
1, . . . , u

′
n).

■ There is an edge from U to V if
R(U(u1), . . . , U(un), V (u1), . . . , V (un)) is true.

Such R is a succinct representation of some graph.

■ Let two sets of vertices be given by two formulas Φ◦, Φ•.

■ We show how to write a formula Pathk
R[Φ

◦,Φ•] that is satisfiable iff
there is a path of length at most k from some vertex in Φ◦ to some
vertex in Φ•. Assumption of seriality: there is an edge out of each
vertex.

PathkR[Φ
◦,Φ•]

21 / 23

Use the variables u0
1, . . . , u

0
n, u

1
1, . . . , u

1
n, . . . , u

k
1, . . . , u

k
n. Form the

conjunction of

■ S(u0
1, . . . , u

0
n)

■ S(u1
1, . . . , u

1
n)

■ . . .

■ S(uk
1, . . . , u

k
n)

■ R(u0
1, . . . , u

0
n, u

1
1, . . . , u

1
n)

■ R(u1
1, . . . , u

1
n, u

2
1, . . . , u

2
n)

■ . . .

■ R(uk−1
1 , . . . , uk−1

n , uk
1, . . . , u

k
n)

■ Φ◦(u0
1, . . . , u

0
n)

■
∨k

i=0Φ
•(ui

1, . . . , u
i
n)

The size of PathkR[Φ
◦,Φ•] is polynomial in |S|, |R|, k.

Meaning of PathkR[Φ
◦,Φ•]

22 / 23

■ Consider a valuation satisfying Pathk
R[Φ

◦,Φ•].

■ It defines a sequence of k + 1 vertices (satisfying S).

■ First vertex in Φ◦. Some vertex in Φ•.

■ Edge from each vertex to the next one.

Vice versa, if there is a path from Φcirc to Φ• with length ≤ k, then

■ Any extension of this path to length k will satisfy PathkR[Φ
◦,Φ•].

Succinct representation of computation

graphs

23 / 23

■ Consider a k-tape NTM M = (Γ, Q, δ, q0, {qacc, qrej}) working in
time T .

■ Let x be its input.

■ Consider the subset C of CONF
k
Γ,Q of configurations of size at most

T (|x|).

We can represent the elements of C as valuations of a certain set of
boolean variables.

(The variables, the formulas S and R and their sizes will be discussed on
the blackboard)

	Recall: TM Configurations
	Recall: TM computations
	Configurations and computation steps as a graph
	Nondeterministic Turing Machines
	NTM accepting a language
	Non-deterministic RAM
	classes NTIME and NP
	NP as a class of verification problems
	Examples
	Relation between ¶ and NP
	Polynomial reducibility
	Properties of polynomial reducibility.
	NP-hardness and NP-completeness
	Existence of NP-complete languages
	SAT
	CNFSAT and k-CNFSAT
	Reducibility of SAT and CNFSAT
	SAT is NP-complete
	Succinctly given graphs and SAT
	PathkR[,]
	Meaning of PathkR[,]
	Succinct representation of computation graphs

