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Recall: TM Configurations

A configuration of a TM with k tapes, the tape symbol set I', and state
set () Is
(G;wi, ..., wg;p1, ..., Pk), Where

m g € () is the current state of the TM;
m w; € ['*- {0} is the contents of the i-th tape.

[0 w; consists of a finite sequence of elements of I, followed by
infinitely many [-s.

m p; € Nis the position of the i-th head. Let leftmost position be 1.

Let (?ONSﬂl‘i’Q be the set of all such configurations.
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Recall: TM computations

ATM M = (T",Q, 6, qo, Qr) defines a relation (actually, a partial
function) 2 on GONS’{:”Q.

<C];w17---,wk;p1,...,pk>]\—4><q’;w1,w’2,...,w;;p’l,...,p;ﬁ) iff
m ¢ QF
m ;= w;|p;]
m(q5 % Ve S0 SE) = (@Y1, V)
B W] = w;p; — V]

m p; = max(l,p; + s;)
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Configurations and computation steps as a
graph

Given M with k tapes, tape alphabet I' and set of states (), we may
consider a directed graph:

m Set of vertices is the set of configurations GONS?Q.

m An edge goes from configuration C' to configuration C" iff C %o

Properties

m Any configuration C' has at most one outgoing edge.

m If M accepts a language L in time 7', then for any x € {0, 1}*, the

path starting in the starting configuration corresponding to x has
length bounded by T'(|z]).
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Nondeterministic Turing Machines

m deterministic transition function:

§:Q xT* = Q xT'* ! x Move®

m nondeterministic transition relation

0 C (Q X Fk) X (Q x TF1 Move"’)

m (all other components of a TM remain the same)

In the computation graph, a configuration may have more than one
outgoing edge.
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NTM accepting a language

An NTM M accepts a language L C {0,1}* in time T if for all x € L,
there exists a path of length at most T'(|x|) in the computation graph of
M from the starting configuration for  to some accepting configuration.

m What about the length of other paths from this starting
configuration?

m What about the length of paths from starting configuration for
some y & L7

We choose to not put any restrictions on them.

Exercise. Show that if an NTM M accepts the language L in time T,
then exists NTM M’ that accepts L and where all path from starting
configurations have length at most O(T).
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Non-deterministic RAM

m Has nondeterministic choice operation T' < {0, 1}.

[0 The value of the register T" will be nondeterministically chosen
as 0 or 1.

[0 The configuration of RAM where this instruction is executed
will have two successors in the RAM's computation graph.

NRAM-s and NTM-s can simulate each other without much loss in
efficiency.
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classes NTIME and NP

mlet f:N—>N
m The class NTIME(f) C 21%1}" is the set of all languages L, where

[0 exists g : N — N, such that
[0 exists NTM M that accepts L in time ¢, and

0 g€ O(f).

NP = | NTIME(An.n%)

ceN

If we replaced “NTM" with “NRAM", the class NP would stay the same.
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NP as a class of verification problems

Theorem. L € NP iff
m there exists a DTM M and a polynomial p, such that
0 x e L
iff
0 Jdy € {0,1}* with |y| < p(|x|), such that
0 M(x,y) accepts in at most p(|x|) steps.

y may be seen as the certificate that x € L.
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Examples

Many searching problems.
m Does a graph GG have a clique of size at least k7

m Does a boolean formula with variables have a satisfying assignment
to those variables?

m Does a weighted graph have a traveling salesman tour of length at
most k7

m |s a number n composite?
m Can the vertices of a graph be colored with three colors?
m Are two graphs (given e.g. by their adjacency lists) isomorphic?

m Do the vertices u and v of some graph belong to the same
connected component?
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Relation between P and NP

Theorem. P C NP C |y DTIME(2™).

m Left inclusion: every DTM is a NTM.

m Right inclusion: using time 2°®(") we can check every certificate of
length p(n).

Right inclusion in more general form:
Theorem. NTIME(f) C (J.ox DTIME(An.c/™).
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Polynomial reducibility

A language L is polynomially [many-one| reducible to a language L' if

m exists a polynomial-time computable function f: {0,1}* — {0, 1},
such that

m forall x € {0,1}*
mx < Liff f(x) e L.
Denote L <P /.
m we think f as “easily” computable.

m Hence, if we know how to test membership in L, we also know how
to test membership in L.

m We can say that membership problem for L’ is at least as hard as

- membership problemforr. ...
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Properties of polynomial reducibility.

m If L, <P L,and Ly < L then L <P Lj
m IfL; <P L,and Ly € Pthen L; € P
m If [ §El Lo and Ly € NP then L € NP
For a language L C {0,1}" denote L¢ = {0, 1}*\ L.

m [f Ll SIP; L2 then Llc SE L2C.
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NP-hardness and NP-completeness

A language L is NP-hard if for all L’ € NP we have L' <P L.

A language L is NP-complete if L is NP-hard and L € NP.

If a language L is NP-hard and L € P then P = NP.

If a language L is NP-complete then L € P if and only if P = NP.
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Existence of NP-complete languages

Theorem. There exist NP-complete languages.

Proof. Consider the following language. We show that it is
NP-complete.

L={(M,z,1") INTM M accepts z in at most n steps}

L i1s in NP. The certificate consists of the choices M must make to
accept x.

L is NP-hard.
m Let L' € NP. Let M’ be a NTM that accepts L' in time T.
m Let f(x) = (M, 2,170=D) This f shows that L' <P L.
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SAT

A boolean formula over variables uq, ..., u, consists of those
variables and the logical operators V, A, —,...connecting them.

[0 Let BT be the set of all boolean formulas.

A valuation of uq, ..., u, is a mapping from {uq,...,u,} to
{true, false}.

A boolean formula evaluates to true for no, some, or all valuations
of uy, ..., u,.

O wy; A —uq 1s unsatisfiable;
O (ug Aug) V (ug A —ug) is satisfiable;

O ((u1 — ug) — uy) — uy is tautology.

SAT is the language {¢ € BF | ¢ is satisfiable}.
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CNFSAT and E-CNFSAT

m A literal is either a boolean variable or its negation.
m Adisjunctis [y VIiyV---V I, wherelq,..., [, are literals.

m A boolean formula is in conjuctive normal form if it is of the form
DiNDyAN---ND,, where D¢, ..., D,, are disjuncts.

O Let CNF be the language of all boolean formulas in conjuctive
normal form.

0 Let k-CNTJ be the language of all boolean formulas in
conjuctive normal form, where no disjunct has more than &
literals.

m CNFSAT is the language {p € CNTF | p is satisfiable}.
m k-CNFSAT is the language {¢ € k-CNJF | ¢ is satisfiable}.
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Reducibility of SAT and CNFSAT

Theorem. If k > 3 then SAT <P k-CNFSAT < CNFSAT <! SAT.

We show SAT <P 3-CNFSAT, the rest is trivial.
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SAT is NP-complete

Theorem. SAT is NP-complete.

This result used to be known as Cook’s theorem. Now it is more
commonly known as Cook-Levin theorem.

m Stephen Cook. The complexity of theorem proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory of
Computing (STOC). pp. 151-158, 1971.

m |Leonid Levin. Universal'nye zadachi perebora. Problemy Peredachi
Informatsii 9(3):265-266, 1973.

Proof. SAT € NP is trivial.
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Succinctly given graphs and SAT

m Let uy,...,u, be boolean variables. A directed graph can be
defined as follows:

[0 The vertices of the graph are the valuations of uq, ..., u,
satisfying a boolean formula S(uy, ..., u,).

[0 The edges are given by a boolean formula

R(uy, ... up,uy, ..., ul).

= Thereis an edge from U to V if
RU(uy), ..., U(un), V(ur),...,V(uy)) is true.

Such R is a succinct representation of some graph.

m et two sets of vertices be given by two formulas ®°, ®°.

m We show how to write a formula Path’[®°, ®°] that is satisfiable iff
there is a path of length at most k& from some vertex in $° to some
vertex in ®°*. Assumption of seriality: there is an edge out of each

vertev
\'A YL LA Y7 AN
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Path®,[®°, &°]

Use the variables w9, ... u® ul, ... ul, ..., u¥ ... ,u*. Form the
conjunction of
0 0 0 0,1 1
m S(uy,...,u,) m R(ui,...,u,, uj,...,u,)
1 1 1 1,2 2
m S(ug,...,u,) m R(uj,...,u,,us, ..., u)
n ... n ...
k k k—1 k-1, k k
m S(uf,...,u) m R(uy . ul " ug, . k)
o(,,0 0
m O°(uy, ..., uy)

- \/f:O P (ul,...,ut)

The size of Path’,[®°, ®*] is polynomial in |S

!

R|, k.
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Meaning of Path’,[®°, ®°]

m Consider a valuation satisfying Path’,[®°, ®°].
m It defines a sequence of k£ + 1 vertices (satisfying .S).
m First vertex in ®°. Some vertex in ®°.

m Edge from each vertex to the next one.

Vice versa, if there is a path from ®“rc to ®* with length < k, then

m Any extension of this path to length & will satisfy Path®[®°, ®°].
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Succinct representation of computation
graphs
m Consider a k-tape NTM M = (', Q, 0, qo, {Gaccs Grej } ) Working in
time 1.
m Let x be its input.

m Consider the subset C of (?ONB’?’Q of configurations of size at most
T(Jzl).

We can represent the elements of C as valuations of a certain set of
boolean variables.

(The variables, the formulas S and R and their sizes will be discussed on
the blackboard)
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