Polynomial reducibility. The class NP

Recall: TM Configurations

A configuration of a TM with k tapes, the tape symbol set $\Gamma,$ and state set Q is

 $\langle q; w_1, \ldots, w_k; p_1, \ldots, p_k \rangle$, where

 \blacksquare $q \in Q$ is the current state of the TM;

• $w_i \in \Gamma^* \cdot \{\square^{\omega}\}$ is the contents of the *i*-th tape.

• w_i consists of a finite sequence of elements of Γ , followed by infinitely many \Box -s.

■ $p_i \in \mathbb{N}$ is the position of the *i*-th head. Let leftmost position be 1. Let $CON\mathcal{F}^k_{\Gamma,Q}$ be the set of all such configurations.

Recall: TM computations

A TM $M = (\Gamma, Q, \delta, q_0, Q_F)$ defines a relation (actually, a partial function) $\stackrel{M}{\rightarrow}$ on $\mathcal{CONF}^k_{\Gamma,Q}$.

$$\langle q; w_1, \dots, w_k; p_1, \dots, p_k \rangle \xrightarrow{M} \langle q'; w_1, w_2', \dots, w_k'; p_1', \dots, p_k' \rangle$$
 iff $q \notin Q_F$

$$\bullet \ \gamma_i = w_i[p_i]$$

$$(q';\gamma'_2,\ldots,\gamma'_k;s_1,\ldots,s_k) = \delta(q;\gamma_1,\ldots,\gamma_k)$$

$$\bullet w'_i = w_i[p_i \mapsto \gamma'_i]$$

$$\blacksquare p'_i = \max(1, p_i + s_i)$$

Configurations and computation steps as a graph

Given M with k tapes, tape alphabet Γ and set of states Q, we may consider a directed graph:

- Set of vertices is the set of configurations $CON\mathcal{F}_{\Gamma,Q}^k$.
- An edge goes from configuration C to configuration C' iff $C \xrightarrow{M} C'$. Properties
 - Any configuration C has at most one outgoing edge.
 - If M accepts a language L in time T, then for any $x \in \{0, 1\}^*$, the path starting in the starting configuration corresponding to x has length bounded by T(|x|).

Nondeterministic Turing Machines

■ **deterministic** transition function:

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \mathsf{Move}^k$$

nondeterministic transition relation

$$\delta \subseteq \left(Q \times \Gamma^k\right) \times \left(Q \times \Gamma^{k-1} \times \mathsf{Move}^k\right)$$

■ (all other components of a TM remain the same)

In the computation graph, a configuration may have more than one outgoing edge.

NTM accepting a language

An NTM M accepts a language $L \subseteq \{0,1\}^*$ in time T if for all $x \in L$, there exists a path of length at most T(|x|) in the computation graph of M from the starting configuration for x to some accepting configuration.

- What about the length of other paths from this starting configuration?
- What about the length of paths from starting configuration for some $y \notin L$?

We choose to not put any restrictions on them.

Exercise. Show that if an NTM M accepts the language L in time T, then exists NTM M' that accepts L and where all path from starting configurations have length at most O(T).

Non-deterministic RAM

■ Has nondeterministic choice operation $T \leftarrow \{0, 1\}$.

- The value of the register T will be nondeterministically chosen as 0 or 1.
- The configuration of RAM where this instruction is executed will have two successors in the RAM's computation graph.

NRAM-s and NTM-s can simulate each other without much loss in efficiency.

classes NTIME and NP

$\blacksquare \text{ Let } f: \mathbb{N} \to \mathbb{N}$

■ The class $\mathsf{NTIME}(f) \subseteq 2^{\{0,1\}^*}$ is the set of all languages L, where

• exists $g: \mathbb{N} \to \mathbb{N}$, such that

 \blacklozenge exists NTM M that accepts L in time g, and

 $\blacklozenge \ g \in O(f).$

$$\mathsf{NP} = \bigcup_{c \in \mathbb{N}} \mathsf{NTIME}(\lambda n.n^c)$$

If we replaced "NTM" with "NRAM", the class NP would stay the same.

NP as a class of verification problems

Theorem. $L \in NP$ iff

 \blacksquare there exists a DTM M and a polynomial p, such that

iff

- $\exists y \in \{0,1\}^*$ with $|y| \le p(|x|)$, such that
- M(x,y) accepts in at most p(|x|) steps.

y may be seen as the certificate that $x \in L$.

Examples

Many searching problems.

- Does a graph G have a clique of size at least k?
- Does a boolean formula with variables have a satisfying assignment to those variables?
- Does a weighted graph have a traveling salesman tour of length at most k?
- $\blacksquare Is a number n composite?$
- Can the vertices of a graph be colored with three colors?
- Are two graphs (given e.g. by their adjacency lists) isomorphic?
- Do the vertices u and v of some graph belong to the same connected component?

Relation between P and NP

Theorem. $P \subseteq NP \subseteq \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(2^{n^c}).$

■ Left inclusion: every DTM is a NTM.

■ Right inclusion: using time $2^{O(p(n))}$ we can check every certificate of length p(n).

Right inclusion in more general form: **Theorem.** NTIME $(f) \subseteq \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(\lambda n. c^{f(n)}).$

Polynomial reducibility

A language L is polynomially [many-one] reducible to a language L' if

- exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$, such that
- $\blacksquare \text{ for all } x \in \{0,1\}^*$
- $\blacksquare x \in L \text{ iff } f(x) \in L'.$

Denote $L \leq_{\mathrm{m}}^{\mathrm{P}} L'$.

• we think f as "easily" computable.

- Hence, if we know how to test membership in L', we also know how to test membership in L.
- We can say that membership problem for L' is at least as hard as membership problem for L.

Properties of polynomial reducibility.

$$\blacksquare$$
 If $L_1 \leq_{\mathrm{m}}^{\mathrm{P}} L_2$ and $L_2 \leq_{\mathrm{m}}^{\mathrm{P}} L_3$ then $L_1 \leq_{\mathrm{m}}^{\mathrm{P}} L_3$

If
$$L_1 \leq^{\mathrm{P}}_{\mathrm{m}} L_2$$
 and $L_2 \in \mathsf{P}$ then $L_1 \in \mathsf{P}$

If
$$L_1 \leq_{\mathrm{m}}^{\mathrm{P}} L_2$$
 and $L_2 \in \mathsf{NP}$ then $L_1 \in \mathsf{NP}$

For a language $L \subseteq \{0,1\}^*$ denote $L^c = \{0,1\}^* \setminus L$.

$$\blacksquare If L_1 \leq^{\mathrm{P}}_{\mathrm{m}} L_2 \text{ then } L_1^{\mathrm{c}} \leq^{\mathrm{P}}_{\mathrm{m}} L_2^{\mathrm{c}}.$$

NP-hardness and NP-completeness

- A language L is NP-hard if for all $L' \in NP$ we have $L' \leq_{m}^{P} L$.
- A language L is NP-complete if L is NP-hard and $L \in NP$.

- If a language L is NP-hard and $L \in P$ then P = NP.
- If a language L is NP-complete then $L \in P$ if and only if P = NP.

Existence of NP-complete languages

Theorem. There exist NP-complete languages.

Proof. Consider the following language. We show that it is NP-complete.

 $L = \{ \langle M, x, 1^n \rangle \, | \, \mathsf{NTM} \ M \text{ accepts } x \text{ in at most } n \text{ steps} \}$

L is in NP. The certificate consists of the choices M must make to accept $\boldsymbol{x}.$

L is NP-hard.

■ Let $L' \in \mathsf{NP}$. Let M' be a NTM that accepts L' in time T.

• Let $f(x) = \langle M', x, 1^{T(|x|)} \rangle$. This f shows that $L' \leq_{\mathrm{m}}^{\mathrm{P}} L$.

SAT

A boolean formula over variables u_1, \ldots, u_n consists of those variables and the logical operators \lor , \land , \neg ,... connecting them.

• Let \mathcal{BF} be the set of all boolean formulas.

- A valuation of u_1, \ldots, u_n is a mapping from $\{u_1, \ldots, u_n\}$ to $\{true, false\}$.
- A boolean formula evaluates to true for no, some, or all valuations of u_1, \ldots, u_n .
 - $u_1 \wedge \neg u_1$ is unsatisfiable;
 - $(u_1 \wedge u_2) \lor (u_2 \wedge \neg u_3)$ is satisfiable;
 - $((u_1 \rightarrow u_2) \rightarrow u_1) \rightarrow u_1$ is tautology.
- SAT is the language $\{\varphi \in \mathcal{BF} | \varphi \text{ is satisfiable} \}$.

CNFSAT and k-CNFSAT

- A literal is either a boolean variable or its negation.
- A disjunct is $l_1 \vee l_2 \vee \cdots \vee l_r$, where l_1, \ldots, l_r are literals.
- A boolean formula is in conjuctive normal form if it is of the form $D_1 \wedge D_2 \wedge \cdots \wedge D_m$, where D_1, \ldots, D_m are disjuncts.
 - ◆ Let CNF be the language of all boolean formulas in conjuctive normal form.
 - ◆ Let k-CNF be the language of all boolean formulas in conjuctive normal form, where no disjunct has more than k literals.
- CNFSAT is the language $\{\varphi \in \mathcal{CNF} | \varphi \text{ is satisfiable} \}$.
- k-CNFSAT is the language $\{\varphi \in k$ - $\mathcal{CNF} | \varphi \text{ is satisfiable} \}$.

Reducibility of SAT and CNFSAT

Theorem. If $k \ge 3$ then SAT $\leq_{\mathrm{m}}^{\mathrm{P}} k$ -CNFSAT $\leq_{\mathrm{m}}^{\mathrm{P}} \mathsf{CNFSAT} \leq_{\mathrm{m}}^{\mathrm{P}} \mathsf{SAT}$.

We show SAT $\leq_{\mathrm{m}}^{\mathrm{P}}$ 3-CNFSAT, the rest is trivial.

SAT is NP-complete

Theorem. SAT is NP-complete.

This result used to be known as Cook's theorem. Now it is more commonly known as Cook-Levin theorem.

- Stephen Cook. The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing (STOC). pp. 151–158, 1971.
- Leonid Levin. Universal'nye zadachi perebora. Problemy Peredachi Informatsii **9**(3):265–266, 1973.

Proof. SAT \in NP is trivial.

Succinctly given graphs and SAT

- Let u_1, \ldots, u_n be boolean variables. A directed graph can be defined as follows:
 - The vertices of the graph are the valuations of u_1, \ldots, u_n satisfying a boolean formula $S(u_1, \ldots, u_n)$.
 - The edges are given by a boolean formula $R(u_1, \ldots, u_n, u'_1, \ldots, u'_n).$
 - There is an edge from U to V if $R(U(u_1), \ldots, U(u_n), V(u_1), \ldots, V(u_n))$ is true.

Such R is a succinct representation of some graph.

- Let two sets of vertices be given by two formulas Φ° , Φ^{\bullet} .
- We show how to write a formula Path^k_R[Φ°, Φ•] that is satisfiable iff there is a path of length at most k from some vertex in Φ° to some vertex in Φ•. Assumption of seriality: there is an edge out of each vertex.

$\operatorname{Path}_{R}^{k}[\Phi^{\circ}, \Phi^{\bullet}]$

Use the variables $u_1^0, \ldots, u_n^0, u_1^1, \ldots, u_n^1, \ldots, u_1^k, \ldots, u_n^k$. Form the conjunction of

- $S(u_1^0, \dots, u_n^0)$ $R(u_1^0, \dots, u_n^0, u_1^1, \dots, u_n^1)$ $S(u_1^1, \dots, u_n^1)$ $R(u_1^1, \dots, u_n^1, u_1^2, \dots, u_n^2)$ \dots
- $\blacksquare S(u_1^k, \dots, u_n^k) \blacksquare R(u_1^{k-1}, \dots, u_n^{k-1}, u_1^k, \dots, u_n^k)$
- $\Phi^{\circ}(u_1^0, \dots, u_n^0)$ $\bigvee_{i=0}^k \Phi^{\bullet}(u_1^i, \dots, u_n^i)$

The size of $\operatorname{Path}_{R}^{k}[\Phi^{\circ}, \Phi^{\bullet}]$ is polynomial in |S|, |R|, k.

Meaning of $\operatorname{Path}_{R}^{k}[\Phi^{\circ}, \Phi^{\bullet}]$

- Consider a valuation satisfying $\operatorname{Path}_{R}^{k}[\Phi^{\circ}, \Phi^{\bullet}]$.
- It defines a sequence of k + 1 vertices (satisfying S).
- First vertex in Φ° . Some vertex in Φ^{\bullet} .
- Edge from each vertex to the next one.

Vice versa, if there is a path from $\Phi^c irc$ to Φ^{\bullet} with length $\leq k$, then

• Any extension of this path to length k will satisfy $\operatorname{Path}_{R}^{k}[\Phi^{\circ}, \Phi^{\bullet}]$.

Succinct representation of computation graphs

- Consider a k-tape NTM $M = (\Gamma, Q, \delta, q_0, \{q_{acc}, q_{rej}\})$ working in time T.
- \blacksquare Let x be its input.
- Consider the subset \mathcal{C} of $\mathcal{CONF}_{\Gamma,Q}^k$ of configurations of size at most T(|x|).

We can represent the elements of $\mathcal C$ as valuations of a certain set of boolean variables.

(The variables, the formulas S and R and their sizes will be discussed on the blackboard)