
Polynomial hierarchy

Turing reducibility

2 / 23

Let A,B ⊆ {0, 1}∗.

■ Turing reducibility: A ≤T B if there is a oracle TM M (·), such that
MB recognizes A.

◆ I.e. MB(x) stops for all x ∈ {0, 1}∗ and
MB(x) = true ⇔ x ∈ A.

■ Polynomial-time Turing reducibility: A ≤P
T B if there is a oracle

TM M (·), such that MB recognizes A in polynomial time.

■ Nondeterministic polynomial-time Turing reducibility: A ≤NP
T B if

there is a oracle TM M (·), such that MB recognizes A in
polynomial time.

Example: SATc ≤P
T SAT

Recursive hierarchy

3 / 23

Let M1,M2, . . . be an enumeration of all oracle Turing machines.

■ Languages A,B ⊆ {0, 1}∗ are Turing equivalent if A ≤T B and
B ≤T A. Denote A ≡T B.

◆ Let [A] be the equivalence class of ≡T containing A.

■ The Turing jump of a language A is

A′ = {i |MA
i (i) stops}

(generalize to sets of languages)

■ Theorem. A′ 6≤T A.

◆ Proof: Diagonalization. Similar to halting problem.

■ Denote Σ0 = [∅]; Σi = Σi−1 ∪ Σ′
i−1. Infinite hierarchy

Exact problems

4 / 23

Consider the following problems

■ Given a graph G and an integer k. Does the largest clique of G
have the size exactly k?

■ Given a propositional formula ϕ. Does there exist any smaller
formula ϕ′, such that ϕ ≡ ϕ′?

■ Given a set ϕ1, . . . , ϕm of formulas in CNF and a number k. Do
there exist i1, . . . , ik, such that ϕi1 ∧ · · · ∧ ϕik is unsatisfiable?

These do not seem to be in NP. Short certificates seem hard to find.
But these problems are in PSPACE.

Classes Σp
2 and Πp

2

5 / 23

■ A language L ⊆ {0, 1}∗ is in Σp
2, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) : M(x, u, v) = true

■ A language L ⊆ {0, 1}∗ is in Πp
2, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∀u ∈ {0, 1}q(|x|)∃v ∈ {0, 1}q(|x|) : M(x, u, v) = true

Clearly, Σp
2 = coΠp

2 and vice versa.
NP, coNP ⊆ Σp

2 ∩ Πp
2

Classes Σp
k and Πp

k

6 / 23

■ A language L ⊆ {0, 1}∗ is in Σp
k, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∃v1 ∈ {0, 1}q(|x|)∀v2 ∈ {0, 1}q(|x|) . . . Qvk ∈ {0, 1}q(|x|)
︸ ︷︷ ︸

k quantifiers

:

M(x, v1, . . . , vk) = true

■ A language L ⊆ {0, 1}∗ is in Πp
k, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∀v1 ∈ {0, 1}q(|x|)∃v2 ∈ {0, 1}q(|x|) . . . Qvk ∈ {0, 1}q(|x|)
︸ ︷︷ ︸

k quantifiers

:

M(x, v1, . . . , vk) = true

■ NP = Σp
1, coNP = Πp

1. Σ
p
k,Π

p
k ⊆ PSPACE.

Polynomial hierarchy

7 / 23

■ PH =
⋃

i∈NΣ
p
i .

■ As Σp
i ⊆ Πp

i+1, we also have PH =
⋃

i∈NΠ
p
i .

■ Generalization of P 6= NP and NP 6= coNP conjectures: Polynomial
hierarchy does not collapse.

◆ I.e. there is belief that Σp
i 6= Σp

i+1 for all i.

◆ Actually, it is a separate conjecture for each i.

Complete problems for Σp
i and Πp

i

8 / 23

Completeness according to the reduction ≤P
m.

ΣiSAT = {∃u1∀u2 · · ·Qiui : ϕ(u1, u2, . . . , ui) = true}

ΠiSAT = {∀u1∃u2 · · ·Qiui : ϕ(u1, u2, . . . , ui) = true}

where

■ ϕ is a Boolean formula

■ u1, . . . , ui are vectors of Boolean variables

■ Quantifications are alternating

Theorem. ΣiSAT is Σp
i -complete. ΠiSAT is Πp

i -complete.

Defining Σp
i and Πp

i through oracle TMs

9 / 23

Theorem. Σp
i = NPΣi−1SAT. Πp

i = coΣp
i .

Collapsing

10 / 23

Theorem. If Σp
i = Πp

i , then Σp
i+1 = Σp

i .
Corollary. If Σp

i = Πp
i , then Σp

j = Σp
i for all j ≥ i.

PH-completeness

11 / 23

Theorem. If PH has complete problems then polynomial hierarchy
collapses.
Corollary. If PH = PSPACE then polynomial hierarchy collapses.

Σp
k and game-playing

12 / 23

■ Imagine a two-player game with perfect information

◆ A set of possible states, a starting state, possible ending states
with indication who won and lost.

◆ For each state: possible legal moves for both players.

◆ Both players always know the state the game is in.

■ Can the first player win in k half-moves?

∃my move ∀opp.’s move ∃my move . . .
︸ ︷︷ ︸

k quantifications

I win!

Exercise. What is the meaning of Πp
k?

Alternating Turing Machines

13 / 23

■ Transition relation similar to NTM-s.

◆ For simplicity assume that each configuration of M has exactly
two possible successors.

■ Each state labeled with ∃ or ∀.

■ Acceptance condition:

◆ A configuration with state qacc leads to accepting
configuration;

◆ A configuration with a state labeled with ∃ leads to accepting
configuration if at least one of its successors leads to accepting
configuration.

◆ A configuration with a state labeled with ∀ leads to accepting
configuration if both of its successors lead to accepting
configuration.

◆ x ∈ {0, 1}∗ is accepted if starting configuration with x leads to
accepting configuration.

Class ATIME(T), ΣiATIME(T), ΠiATIME(T)

14 / 23

■ L ∈ ATIME(T) if exists an ATM M and constant c, such that for
all x ∈ {0, 1}∗:

◆ All paths in the configuration graph of M , starting from the
initial configuration of x, have length at most c · T (|x|);

◆ x ∈ L iff M accepts x.

■ L ∈ ΣiTIME(T), if exist M , c satisfying the conditions above, and

◆ The initial state of M is labeled with ∃;

◆ on all paths in the configuration graph of M , there are at most
i− 1 switches between ∃ and ∀.

■ L ∈ ΠiTIME(T), if

◆ . . . same as above, but initial state is labeled with ∀.

Equivalences

15 / 23

Theorems.

■ Σp
i =

⋃

c ΣiTIME(λn.nc)

■ Πp
i =

⋃

cΠiTIME(λn.nc)

■
⋃

c ATIME(λn.nc) = PSPACE

Time-space tradeoffs for SAT

16 / 23

■ L ∈ TISP(T, S) if exists DTM M that accepts L in time O(T) and
in space O(S)

■ Theorem. SAT 6∈ TISP(λn.n1.1, λn.n0.1).

Lemma on efficiency of reduction

17 / 23

Lemma. If SAT ∈ TISP(λn.n1.1, λn.n0.1) then
NTIME(λn.n) ⊆ TISP(λn.n1.1 · polylog(n), λn.n0.1 · polylog(n)).

Claim. If L ∈ NTIME(T), then L can be recognized by some oblivious
NTM in time λn.T (n) log T (n).

■ The head movement only depends on n, not on L;

■ Position of head at each step; and previous step when the head was
at a certain position, can be computed in time polylog(n).

Claim. If L is recognized in time T by some oblivious NTM, then there
exists a reduction f from L, to SAT, such that

■ |f(x)| ∈ O(T);

■ Each bit of f(x) can be computed in time polylog(|x|).

Time to alternation

18 / 23

Lemma. TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof. M accepts x in space c · |x|2 and time c · |x|12 iff

■ Exist configurations C0, C1, . . . , Cc·|x|6 of M , such that

■ for each i ∈ {0, . . . , c · |x|6}

■ Ci is reachable from Ci−1 in |x|6 steps. Also, C0 and Cc·|x|6 are
initial and final configurations.

Last check can be made in time |x|6. The configurations take space |x|8.

Padding argument

19 / 23

Lecture 5 of Complexity Theory November 6, 2009

The Padding Argument

If CL1(f(n)) and CL2(g(n)) are complexity classes that are character-

ized by the resources (time of space) they allow to spend to the machines

that accept languages belonging to these classes. The resources are mea-

sured by functions f(n) and g(n) respectively (with O-precision), where n

is the input size.

Theorem: If CL1(f(n)) ⊆ CL2(g(n)) then CL1(f(nc)) ⊆ CL2(g(n
c))

for every constant c ∈ N.

Proof : Let L ∈ CL1(f(nc)) and M be a machine that decides L in f(nc)-

time(or space). If c = 1, the statement is trivial. Otherwise, if c ≥ 2, define

a new language

L′ = {x01|x|c−|x|−1 : x ∈ L} .

14

Padding argument

20 / 23

Lecture 5 of Complexity Theory November 6, 2009

Define a new machine M ′(y) that accepts iff y is in the form x01|x|c−|x|−1

and M(x) = 1. Machine M ′ works with resources f(|x|c) = f(|y|) and

hence,

L′ ∈ CL1(f(n)) ⊆ CL2(g(n)) .

Hence, there is a CL2-machine N ′ that decides L′ in g(n)-time (or space).

Finally, define a machine N(x) ≡ N ′(x01|x|c − |x| − 1), which decides L

with resources

g(

x01|x|c−|x|−1

) = g(|x|c) .

Hence, L ∈ CL2(g(|x|
c)).

Corollary : If NTIME(n) ⊆ DTIME(n1.2) then

NTIME(n10) ⊆ DTIME(n12) .

14

Relationship on DTIME, NTIME, Σ2TIME

21 / 23

Lemma. If NTIME(n) ⊆ DTIME(n1.2) then
Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof. Padding argument gives NTIME(n8) ⊆ DTIME(n9.6).
L ∈ Σ2TIME(n8) ⇔ exists DTM M working in time O(n8), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

∃v ∈ {0, 1}c|x|
8

: M(x, u, v) = 0

hence exists NTM M ′ working in time O(n8), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

: M ′(x, u) = 1

hence exists DTM M ′′ working in time O(n9.6), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

: M ′′(x, u) = 0

x ∈ L ⇔ ∃u ∈ {0, 1}c|x|
8

: M ′′(x, u) = 1

hence exists NTM M ′′′ working in time O(n9,6), that recognizes L.

Putting it together

22 / 23

SAT ∈ TISP(n1.1, n0,1)

NTIME(n10) ⊆ TISP(n12, n2)

TISP(n12, n2) ⊆ Σ2TIME(n8)

Σ2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2, n0.2)

padding

TISP(n1.2, . . .) ⊆ DTIME(n1.2)

Thus NTIME(n10) ⊆ NTIME(n9.6), contradiction

Separating PH and PSPACE

23 / 23

Theorem. There exists A ⊆ {0, 1}∗, such that PHA 6= PSPACEA.
More generally, for each k there exist oracles, relative to which the
polynomial hierarchy has exactly k levels.

	Turing reducibility
	Recursive hierarchy
	Exact problems
	Classes 2p and 2p
	Classes kp and kp
	Polynomial hierarchy
	Complete problems for ip and ip
	Defining ip and ip through oracle TMs
	Collapsing
	PH-completeness
	kp and game-playing
	Alternating Turing Machines
	Class ATIME(T), iATIME(T), iATIME(T)
	Equivalences
	Time-space tradeoffs for SAT
	Lemma on efficiency of reduction
	Time to alternation
	Padding argument
	Padding argument
	Relationship on DTIME, NTIME, 2TIME
	Putting it together
	Separating PH and PSPACE

