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Let A,B ⊆ {0, 1}∗.

■ Turing reducibility: A ≤T B if there is a oracle TM M (·), such that
MB recognizes A.

◆ I.e. MB(x) stops for all x ∈ {0, 1}∗ and
MB(x) = true ⇔ x ∈ A.

■ Polynomial-time Turing reducibility: A ≤P
T B if there is a oracle

TM M (·), such that MB recognizes A in polynomial time.

■ Nondeterministic polynomial-time Turing reducibility: A ≤NP
T B if

there is a oracle TM M (·), such that MB recognizes A in
polynomial time.

Example: SATc ≤P
T SAT



Recursive hierarchy

3 / 23

Let M1,M2, . . . be an enumeration of all oracle Turing machines.

■ Languages A,B ⊆ {0, 1}∗ are Turing equivalent if A ≤T B and
B ≤T A. Denote A ≡T B.

◆ Let [A] be the equivalence class of ≡T containing A.

■ The Turing jump of a language A is

A′ = {i |MA
i (i) stops}

(generalize to sets of languages)

■ Theorem. A′ 6≤T A.

◆ Proof: Diagonalization. Similar to halting problem.

■ Denote Σ0 = [∅]; Σi = Σi−1 ∪ Σ′
i−1. Infinite hierarchy



Exact problems

4 / 23

Consider the following problems

■ Given a graph G and an integer k. Does the largest clique of G
have the size exactly k?

■ Given a propositional formula ϕ. Does there exist any smaller
formula ϕ′, such that ϕ ≡ ϕ′?

■ Given a set ϕ1, . . . , ϕm of formulas in CNF and a number k. Do
there exist i1, . . . , ik, such that ϕi1 ∧ · · · ∧ ϕik is unsatisfiable?

These do not seem to be in NP. Short certificates seem hard to find.
But these problems are in PSPACE.



Classes Σp
2 and Πp

2
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■ A language L ⊆ {0, 1}∗ is in Σp
2, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) : M(x, u, v) = true

■ A language L ⊆ {0, 1}∗ is in Πp
2, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∀u ∈ {0, 1}q(|x|)∃v ∈ {0, 1}q(|x|) : M(x, u, v) = true

Clearly, Σp
2 = coΠp

2 and vice versa.
NP, coNP ⊆ Σp

2 ∩ Πp
2



Classes Σp
k and Πp

k
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■ A language L ⊆ {0, 1}∗ is in Σp
k, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∃v1 ∈ {0, 1}q(|x|)∀v2 ∈ {0, 1}q(|x|) . . . Qvk ∈ {0, 1}q(|x|)
︸ ︷︷ ︸

k quantifiers

:

M(x, v1, . . . , vk) = true

■ A language L ⊆ {0, 1}∗ is in Πp
k, if there is a polynomial-time DTM

M and a polynomial q, such that

x ∈ L ⇔ ∀v1 ∈ {0, 1}q(|x|)∃v2 ∈ {0, 1}q(|x|) . . . Qvk ∈ {0, 1}q(|x|)
︸ ︷︷ ︸

k quantifiers

:

M(x, v1, . . . , vk) = true

■ NP = Σp
1, coNP = Πp

1. Σ
p
k,Π

p
k ⊆ PSPACE.



Polynomial hierarchy
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■ PH =
⋃

i∈NΣ
p
i .

■ As Σp
i ⊆ Πp

i+1, we also have PH =
⋃

i∈NΠ
p
i .

■ Generalization of P 6= NP and NP 6= coNP conjectures: Polynomial
hierarchy does not collapse.

◆ I.e. there is belief that Σp
i 6= Σp

i+1 for all i.

◆ Actually, it is a separate conjecture for each i.



Complete problems for Σp
i and Πp

i
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Completeness according to the reduction ≤P
m.

ΣiSAT = {∃u1∀u2 · · ·Qiui : ϕ(u1, u2, . . . , ui) = true}

ΠiSAT = {∀u1∃u2 · · ·Qiui : ϕ(u1, u2, . . . , ui) = true}

where

■ ϕ is a Boolean formula

■ u1, . . . , ui are vectors of Boolean variables

■ Quantifications are alternating

Theorem. ΣiSAT is Σp
i -complete. ΠiSAT is Πp

i -complete.



Defining Σp
i and Πp

i through oracle TMs
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Theorem. Σp
i = NPΣi−1SAT. Πp

i = coΣp
i .



Collapsing

10 / 23

Theorem. If Σp
i = Πp

i , then Σp
i+1 = Σp

i .
Corollary. If Σp

i = Πp
i , then Σp

j = Σp
i for all j ≥ i.



PH-completeness
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Theorem. If PH has complete problems then polynomial hierarchy
collapses.
Corollary. If PH = PSPACE then polynomial hierarchy collapses.



Σp
k and game-playing
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■ Imagine a two-player game with perfect information

◆ A set of possible states, a starting state, possible ending states
with indication who won and lost.

◆ For each state: possible legal moves for both players.

◆ Both players always know the state the game is in.

■ Can the first player win in k half-moves?

∃my move ∀opp.’s move ∃my move . . .
︸ ︷︷ ︸

k quantifications

I win!

Exercise. What is the meaning of Πp
k?



Alternating Turing Machines
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■ Transition relation similar to NTM-s.

◆ For simplicity assume that each configuration of M has exactly
two possible successors.

■ Each state labeled with ∃ or ∀.

■ Acceptance condition:

◆ A configuration with state qacc leads to accepting
configuration;

◆ A configuration with a state labeled with ∃ leads to accepting
configuration if at least one of its successors leads to accepting
configuration.

◆ A configuration with a state labeled with ∀ leads to accepting
configuration if both of its successors lead to accepting
configuration.

◆ x ∈ {0, 1}∗ is accepted if starting configuration with x leads to
accepting configuration.



Class ATIME(T ), ΣiATIME(T ), ΠiATIME(T )
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■ L ∈ ATIME(T ) if exists an ATM M and constant c, such that for
all x ∈ {0, 1}∗:

◆ All paths in the configuration graph of M , starting from the
initial configuration of x, have length at most c · T (|x|);

◆ x ∈ L iff M accepts x.

■ L ∈ ΣiTIME(T ), if exist M , c satisfying the conditions above, and

◆ The initial state of M is labeled with ∃;

◆ on all paths in the configuration graph of M , there are at most
i− 1 switches between ∃ and ∀.

■ L ∈ ΠiTIME(T ), if

◆ . . . same as above, but initial state is labeled with ∀.



Equivalences
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Theorems.

■ Σp
i =

⋃

c ΣiTIME(λn.nc)

■ Πp
i =

⋃

cΠiTIME(λn.nc)

■
⋃

c ATIME(λn.nc) = PSPACE



Time-space tradeoffs for SAT
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■ L ∈ TISP(T, S) if exists DTM M that accepts L in time O(T ) and
in space O(S)

■ Theorem. SAT 6∈ TISP(λn.n1.1, λn.n0.1).



Lemma on efficiency of reduction
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Lemma. If SAT ∈ TISP(λn.n1.1, λn.n0.1) then
NTIME(λn.n) ⊆ TISP(λn.n1.1 · polylog(n), λn.n0.1 · polylog(n)).

Claim. If L ∈ NTIME(T ), then L can be recognized by some oblivious
NTM in time λn.T (n) log T (n).

■ The head movement only depends on n, not on L;

■ Position of head at each step; and previous step when the head was
at a certain position, can be computed in time polylog(n).

Claim. If L is recognized in time T by some oblivious NTM, then there
exists a reduction f from L, to SAT, such that

■ |f(x)| ∈ O(T );

■ Each bit of f(x) can be computed in time polylog(|x|).



Time to alternation
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Lemma. TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof. M accepts x in space c · |x|2 and time c · |x|12 iff

■ Exist configurations C0, C1, . . . , Cc·|x|6 of M , such that

■ for each i ∈ {0, . . . , c · |x|6}

■ Ci is reachable from Ci−1 in |x|6 steps. Also, C0 and Cc·|x|6 are
initial and final configurations.

Last check can be made in time |x|6. The configurations take space |x|8.



Padding argument
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Lecture 5 of Complexity Theory November 6, 2009

The Padding Argument

If CL1(f(n)) and CL2(g(n)) are complexity classes that are character-

ized by the resources (time of space) they allow to spend to the machines

that accept languages belonging to these classes. The resources are mea-

sured by functions f(n) and g(n) respectively (with O-precision), where n

is the input size.

Theorem: If CL1(f(n)) ⊆ CL2(g(n)) then CL1(f(nc)) ⊆ CL2(g(n
c))

for every constant c ∈ N.

Proof : Let L ∈ CL1(f(nc)) and M be a machine that decides L in f(nc)-

time(or space). If c = 1, the statement is trivial. Otherwise, if c ≥ 2, define

a new language

L′ = {x01|x|c−|x|−1 : x ∈ L} .

14



Padding argument
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Lecture 5 of Complexity Theory November 6, 2009

Define a new machine M ′(y) that accepts iff y is in the form x01|x|c−|x|−1

and M(x) = 1. Machine M ′ works with resources f(|x|c) = f(|y|) and

hence,

L′ ∈ CL1(f(n)) ⊆ CL2(g(n)) .

Hence, there is a CL2-machine N ′ that decides L′ in g(n)-time (or space).

Finally, define a machine N(x) ≡ N ′(x01|x|c − |x| − 1), which decides L

with resources

g(












x01|x|c−|x|−1












) = g(|x|c) .

Hence, L ∈ CL2(g(|x|
c)).

Corollary : If NTIME(n) ⊆ DTIME(n1.2) then

NTIME(n10) ⊆ DTIME(n12) .

14



Relationship on DTIME, NTIME, Σ2TIME
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Lemma. If NTIME(n) ⊆ DTIME(n1.2) then
Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof. Padding argument gives NTIME(n8) ⊆ DTIME(n9.6).
L ∈ Σ2TIME(n8) ⇔ exists DTM M working in time O(n8), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

∃v ∈ {0, 1}c|x|
8

: M(x, u, v) = 0

hence exists NTM M ′ working in time O(n8), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

: M ′(x, u) = 1

hence exists DTM M ′′ working in time O(n9.6), s.t.

x 6∈ L ⇔ ∀u ∈ {0, 1}c|x|
8

: M ′′(x, u) = 0

x ∈ L ⇔ ∃u ∈ {0, 1}c|x|
8

: M ′′(x, u) = 1

hence exists NTM M ′′′ working in time O(n9,6), that recognizes L.



Putting it together
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SAT ∈ TISP(n1.1, n0,1)

NTIME(n10) ⊆ TISP(n12, n2)

TISP(n12, n2) ⊆ Σ2TIME(n8)

Σ2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2, n0.2)

padding

TISP(n1.2, . . .) ⊆ DTIME(n1.2)

Thus NTIME(n10) ⊆ NTIME(n9.6), contradiction



Separating PH and PSPACE
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Theorem. There exists A ⊆ {0, 1}∗, such that PHA 6= PSPACEA.
More generally, for each k there exist oracles, relative to which the
polynomial hierarchy has exactly k levels.
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