Probabilistic computation

Probabilistic computations

Consider the Turing machines M in the following form:

- It has an input tape;
- It has a read-only, no-left-move randomness tape, where each cell (up to infinity) contains either 0 or 1;
- It has internal state, working tapes,...
- It accepts through final states.

We say $\Pr[M(x) = 1] = p$ if $\Pr[M(x, \alpha) = 1 \mid \alpha \leftarrow U_{\infty}] = p$.

- \blacksquare U_{∞} is the uniform probability distribution on $\{0,1\}^{\omega}$.
 - ◆ Each bit will be either 0 or 1 with equal probability, and independently of all other bits.

Classes RP, coRP

The PTM M Monte-Carlo recognizes language L if for all $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge 1/2$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] = 0$$

Class RP is the set of all languages Monte-Carlo recognizable by polynomial-time PTM-s.

Running time is polynomial wrt. the length of the first argument of M.

 $L \in \text{coRP}$ if exists a poly-time PTM M, such that for all $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \Pr[M(x) = 1] = 1$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] \le 1/2$$

Example problem in coRP

An arithmetic expression E over variables x_1, \ldots, x_k is one of

• Variable x_i ;

• Constant $n \in \mathbb{Z}$;

Expression
$$E_1 + E_2$$
, $E_1 - E_2$, $E_1 \cdot E_2$.

Given expression E. Is it identical to 0?

This is the polynomial identity testing problem. We do not know how to do it in P.

Schwartz-Zippel lemma

Theorem. Let p be a non-zero k-variable $\leq d$ -degree polynomial over integers. Let S be a finite subset of \mathbb{Z} . If we randomly uniformly pick x_1, \ldots, x_k from S, then $\Pr[p(x_1, \ldots, x_k) = 0] \leq d/|S|$.

Proof. A $\leq d$ -degree single-variable polynomial has at most d roots. Continue by induction over the number of variables.

Algorithm for polynomial identity testing. Select a sufficiently large S. Randomly pick x_1, \ldots, x_k from S. Evaluate the arithmetic expression.

Class ZPP

- Let p_i be the probability that M(x) stops in exactly *i* steps.
- The expected running time of M(x) is $1 \cdot p_1 + 2 \cdot p_2 + \cdots$.

 $\blacksquare \ L \in \mathsf{ZPP}$ if there exists a PTM M, such that

- M runs in expected polynomial time;
- If $x \in L$ then $\Pr[M(x) = 1] = 1$.
- If $x \notin L$ then $\Pr[M(x) = 1] = 0$.

 \blacksquare Such *M* is called a Las Vegas algorithm for *L*.

$\mathsf{ZPP}=\mathsf{RP}\cap\mathsf{coRP}$

Theorem. $ZPP = RP \cap coRP$.

Theorem (Obvious) $P \subseteq NP$. $coRP \subseteq coNP$. $P \subseteq ZPP$.

Handling biased coins

Let the bits in the randomness tape still be independent of each other. Let 0 .

- If bit 1 has probability p, then a tape where bit 1 has probability 1/2 can still be simulated.
- If bit 1 has probability 1/2, then a tape where bit 1 has probability p can still be simulated.

• The bits of p must be computable in polynomial time.

Class BPP

The PTM M recognizes language L with bounded error if for all $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge 2/3$$

 $x \notin L \Leftrightarrow \Pr[M(x) = 1] \le 1/3$

Class BPP is the set of all languages recognizable by polynomial-time PTM-s with bounded error.

Chernoff bounds

Theorem.

Let X_1, \ldots, X_n be mutually independent random variables with values from $\{0, 1\}$. Let $X = X_1 + \cdots + X_n$.

• Let
$$\mu = \mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i]$$
.

 $\blacksquare \text{ Let } \delta > 0. \text{ Then }$

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$
$$\Pr[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$$

Some lemmas

- If $X_1, ..., X_n$ are mutually independent random variables then $\mathbf{E}[\prod_{i=1}^n X_i] = \prod_{i=1}^n \mathbf{E}[X_i].$
- If X is a random variable then $\Pr[X \ge k \cdot \mathbf{E}[X]] \le 1/k$. (Markov's inequality)

Proof of Chernoff bound

Let $p_i = \Pr[X_i = 1]$. Let $t = \ln(1 + \delta)$. Let $\mathbf{P} = \Pr[X \ge (1 + \delta)\mu]$.

$$\begin{aligned} \mathbf{E}[e^{tX}] &= \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}] = \prod_{i=1}^{n} (1 - p_i + p_i e^t) \leq \prod_{i=1}^{n} \exp(p_i (e^t - 1)) \\ &= e^{\mu \delta} \\ \mathbf{P} &= \Pr[e^{tX} \geq e^{t(1+\delta)\mu}] \leq \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}} \leq \frac{e^{\mu \delta}}{(1+\delta)^{(1+\delta)\mu}} \end{aligned}$$

Role of constants in defining RP and BPP

For every $\varepsilon > 0$, define the class BPP_{ε} as the set of languages L, such that exists poly-time PTM M, such that

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge 1 - \varepsilon$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] \le \varepsilon$$

Theorem. If $0 < \varepsilon < 1/2$ then $\mathsf{BPP} = \mathsf{BPP}_{\varepsilon}$.

More general ε

For any function $e : \mathbb{N} \to \mathbb{R}_+$ define the class BPP_e as the set of languages L, such that exists poly-time PTM M, such that

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge 1 - e(|x|)$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] \le e(|x|)$$

Theorem. $\mathsf{BPP}_{\lambda n.1/2-1/poly(n)} = \mathsf{BPP} = \mathsf{BPP}_{\lambda n.2^{-poly(n)}}$

Exercise. What is the corresponding result for RP?

BPP is the model of efficient computation if random choices are allowed.

Strict vs. expected running time

Let M be a PTM that recognizes a language L in expected polynomial time as follows:

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge p$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] \le q$$

Then for any ε , there exists a PTM M' that recognizes L in strict polynomial time as follows:

$$x \in L \Leftrightarrow \Pr[M(x) = 1] \ge p - \varepsilon$$
$$x \notin L \Leftrightarrow \Pr[M(x) = 1] \le q + \varepsilon .$$

$\mathsf{BPP} \subseteq \mathsf{P}/\mathit{poly}$

Theorem. BPP \subseteq P/poly.

Proof. Let $L \in \mathsf{BPP} = \mathsf{BPP}_{\lambda n.2^{-2n}}$. Let M recognize L with error probability 2^{-2n} .

- For each $x \in \{0,1\}^n$, $M(x,\alpha)$ returns whether $x \in L$ for a vast majority of strings α .
- Let E_x be the set of strings α where $M(x, \alpha)$ gives the wrong answer.
- There is a string $\alpha_n \not\in \bigcup_{x \in \{0,1\}^n} E_x$.
- The prefix of α_n (bounded by running time of M) is a suitable advice for M.

Corollary. If SAT \in BPP then PH $= \Sigma_2^p$.

$\mathsf{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p$

Theorem. BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$

Proof. Let M accept $L \in \mathsf{BPP}$ with error probability $\lambda n.2^{-n}$. Let f be running time of M.

For $x \in \{0,1\}^n$, let $S_x \subseteq \{0,1\}^{f(n)}$ be the set of strings α , such that $M(x, \alpha)$ accepts.

• $x \in L \Leftrightarrow \exists u_1, \ldots, u_k \forall \alpha : \bigvee M(x, \alpha \oplus u_j)$. A Σ_2 -procedure.

The classes RL and BPL

- Same as RP and BPP, but for log-space, not poly-time.
- RL is noteworthy for being known to contain the reachability problem in undirected graphs.
 - A couple of years ago, Omer Reingold showed that undirected reachability is in L.