
Probabilistic computation

Probabilistic computations

2 / 18

Consider the Turing machines M in the following form:

■ It has an input tape;

■ It has a read-only, no-left-move randomness tape, where each cell
(up to infinity) contains either 0 or 1;

■ It has internal state, working tapes,. . .

■ It accepts through final states.

We say Pr[M(x) = 1] = p if Pr[M(x, α) = 1 |α← U∞] = p.

■ U∞ is the uniform probability distribution on {0, 1}ω.

◆ Each bit will be either 0 or 1 with equal probability, and
independently of all other bits.

Classes RP, coRP

3 / 18

The PTM M Monte-Carlo recognizes language L if for all x ∈ {0, 1}∗:

x ∈ L⇔ Pr[M(x) = 1] ≥ 1/2

x 6∈ L⇔ Pr[M(x) = 1] = 0

Class RP is the set of all languages Monte-Carlo recognizable by
polynomial-time PTM-s.

■ Running time is polynomial wrt. the length of the first argument of
M .

L ∈ coRP if exists a poly-time PTM M , such that for all x ∈ {0, 1}∗:

x ∈ L⇔ Pr[M(x) = 1] = 1

x 6∈ L⇔ Pr[M(x) = 1] ≤ 1/2

Example problem in coRP

4 / 18

An arithmetic expression E over variables x1, . . . , xk is one of

■ Variable xi;

■ Constant n ∈ Z;

■ Expression E1 + E2, E1 − E2, E1 · E2.

Given expression E. Is it identical to 0?

This is the polynomial identity testing problem. We do not know how to
do it in P.

Schwartz-Zippel lemma

5 / 18

Theorem. Let p be a non-zero k-variable ≤ d-degree polynomial over
integers. Let S be a finite subset of Z. If we randomly uniformly pick
x1, . . . , xk from S, then Pr[p(x1, . . . , xk) = 0] ≤ d/|S|.

Proof. A ≤ d-degree single-variable polynomial has at most d roots.
Continue by induction over the number of variables.

Algorithm for polynomial identity testing. Select a sufficiently large S.
Randomly pick x1, . . . , xk from S. Evaluate the arithmetic expression.

Class ZPP

6 / 18

■ Let pi be the probability that M(x) stops in exactly i steps.

■ The expected running time of M(x) is 1 · p1 + 2 · p2 + · · · .

■ L ∈ ZPP if there exists a PTM M , such that

◆ M runs in expected polynomial time;

◆ If x ∈ L then Pr[M(x) = 1] = 1.

◆ If x 6∈ L then Pr[M(x) = 1] = 0.

■ Such M is called a Las Vegas algorithm for L.

ZPP = RP ∩ coRP

7 / 18

Theorem. ZPP = RP ∩ coRP.

Theorem (Obvious) RP ⊆ NP. coRP ⊆ coNP. P ⊆ ZPP.

Handling biased coins

8 / 18

Let the bits in the randomness tape still be independent of each other.
Let 0 < p < 1.

■ If bit 1 has probability p, then a tape where bit 1 has probability
1/2 can still be simulated.

■ If bit 1 has probability 1/2, then a tape where bit 1 has probability
p can still be simulated.

◆ The bits of p must be computable in polynomial time.

Class BPP

9 / 18

The PTM M recognizes language L with bounded error if for all
x ∈ {0, 1}∗:

x ∈ L⇔ Pr[M(x) = 1] ≥ 2/3

x 6∈ L⇔ Pr[M(x) = 1] ≤ 1/3

Class BPP is the set of all languages recognizable by polynomial-time
PTM-s with bounded error.

Chernoff bounds

10 / 18

Theorem.

■ Let X1, . . . , Xn be mutually independent random variables with
values from {0, 1}. Let X = X1 + · · ·+Xn.

■ Let µ = E[X] =
∑n

i=1 E[Xi].

■ Let δ > 0. Then

Pr[X ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)(1+δ)

)µ

Pr[X ≤ (1− δ)µ] ≤

(

e−δ

(1− δ)(1−δ)

)µ

Some lemmas

11 / 18

■ If X1, . . . , Xn are mutually independent random variables then
E[

∏n
i=1 Xi] =

∏n
i=1 E[Xi].

■ If X is a random variable then Pr[X ≥ k · E[X]] ≤ 1/k.
(Markov’s inequality)

Proof of Chernoff bound

12 / 18

Let pi = Pr[Xi = 1]. Let t = ln(1 + δ). Let P = Pr[X ≥ (1 + δ)µ].

E[etX] =
n
∏

i=1

E[etXi] =
n
∏

i=1

(1− pi + pie
t) ≤

n
∏

i=1

exp(pi(e
t − 1))

= eµδ

P = Pr[etX ≥ et(1+δ)µ] ≤
E[etX]

et(1+δ)µ
≤

eµδ

(1 + δ)(1+δ)µ

Role of constants in defining RP and BPP

13 / 18

For every ε > 0, define the class BPPε as the set of languages L, such
that exists poly-time PTM M , such that

x ∈ L⇔ Pr[M(x) = 1] ≥ 1− ε

x 6∈ L⇔ Pr[M(x) = 1] ≤ ε

Theorem. If 0 < ε < 1/2 then BPP = BPPε.

More general ε

14 / 18

For any function e : N→ R+ define the class BPPe as the set of
languages L, such that exists poly-time PTM M , such that

x ∈ L⇔ Pr[M(x) = 1] ≥ 1− e(|x|)

x 6∈ L⇔ Pr[M(x) = 1] ≤ e(|x|)

Theorem. BPPλn.1/2−1/poly(n) = BPP = BPPλn.2−poly(n)

Exercise. What is the corresponding result for RP?

BPP is the model of efficient computation if random choices are allowed.

Strict vs. expected running time

15 / 18

Let M be a PTM that recognizes a language L in expected polynomial
time as follows:

x ∈ L⇔ Pr[M(x) = 1] ≥ p

x 6∈ L⇔ Pr[M(x) = 1] ≤ q .

Then for any ε, there exists a PTM M ′ that recognizes L in strict
polynomial time as follows:

x ∈ L⇔ Pr[M(x) = 1] ≥ p− ε

x 6∈ L⇔ Pr[M(x) = 1] ≤ q + ε .

BPP ⊆ P/poly

16 / 18

Theorem. BPP ⊆ P/poly .

Proof. Let L ∈ BPP = BPPλn.2−2n . Let M recognize L with error
probability 2−2n.

■ For each x ∈ {0, 1}n, M(x, α) returns whether x ∈ L for a vast
majority of strings α.

■ Let Ex be the set of strings α where M(x, α) gives the wrong
answer.

■ There is a string αn 6∈
⋃

x∈{0,1}n Ex.

■ The prefix of αn (bounded by running time of M) is a suitable
advice for M .

Corollary. If SAT ∈ BPP then PH = Σp
2.

BPP ⊆ Σ
p
2 ∩ Π

p
2

17 / 18

Theorem. BPP ⊆ Σp
2 ∩ Πp

2

Proof. Let M accept L ∈ BPP with error probability λn.2−n. Let f be
running time of M .

■ For x ∈ {0, 1}n, let Sx ⊆ {0, 1}
f(n) be the set of strings α, such

that M(x, α) accepts.

◆ |Sx| ≥ (1− 2−n) · 2f(n) or |Sx| ≤ 2f(n)−n.

■ For u ∈ {0, 1}f(n), denote u⊕ S = {u⊕ α |α ∈ S}.

■ Let k = ⌈f(n)/n⌉+ 1.

■ If
|Sx| ≤ 2f(n)−n

|Sx| ≥ (1− 2−n)2f(n)
, then

for all
exists

{u1, . . . , uk} ⊆ {0, 1}
f(n):

⋃k
j=1(uj ⊕ Sx)

6=
=
{0, 1}f(n).

■ x ∈ L ⇔ ∃u1, . . . , uk∀α :
∨

M(x, α⊕ uj). A Σ2-procedure.

The classes RL and BPL

18 / 18

■ Same as RP and BPP, but for log-space, not poly-time.

■ RL is noteworthy for being known to contain the reachability
problem in undirected graphs.

◆ A couple of years ago, Omer Reingold showed that undirected
reachability is in L.

	Probabilistic computations
	Classes RP, coRP
	Example problem in coRP
	Schwartz-Zippel lemma
	Class ZPP
	ZPP=RPcoRP
	Handling biased coins
	Class BPP
	Chernoff bounds
	Some lemmas
	Proof of Chernoff bound
	Role of constants in defining RP and BPP
	More general
	Strict vs. expected running time
	BPP¶/poly
	BPP2p2p
	The classes RL and BPL

