Probabilistic computation
Consider the Turing machines M in the following form:

- It has an input tape;
- It has a read-only, no-left-move randomness tape, where each cell (up to infinity) contains either 0 or 1;
- It has internal state, working tapes,
- It accepts through final states.

We say $\Pr[M(x) = 1] = p$ if $\Pr[M(x, \alpha) = 1 \mid \alpha \leftarrow U_\infty] = p$.

- U_∞ is the uniform probability distribution on $\{0, 1\}^\omega$.
 - Each bit will be either 0 or 1 with equal probability, and independently of all other bits.
Classes RP, coRP

The PTM M Monte-Carlo recognizes language L if for all $x \in \{0, 1\}^*$:

$$x \in L \iff \Pr[M(x) = 1] \geq 1/2$$
$$x \notin L \iff \Pr[M(x) = 1] = 0$$

Class RP is the set of all languages Monte-Carlo recognizable by polynomial-time PTM-s.

- Running time is polynomial wrt. the length of the first argument of M.

$L \in \text{coRP}$ if exists a poly-time PTM M, such that for all $x \in \{0, 1\}^*$:

$$x \in L \iff \Pr[M(x) = 1] = 1$$
$$x \notin L \iff \Pr[M(x) = 1] \leq 1/2$$
Example problem in \text{coRP}

An arithmetic expression E over variables x_1, \ldots, x_k is one of

- Variable x_i;
- Constant $n \in \mathbb{Z}$;
- Expression $E_1 + E_2$, $E_1 - E_2$, $E_1 \cdot E_2$.

Given expression E. Is it identical to 0?

This is the \text{polynomial identity testing} problem. We do not know how to do it in P.
Theorem. Let p be a non-zero k-variable $\leq d$-degree polynomial over integers. Let S be a finite subset of \mathbb{Z}. If we randomly uniformly pick x_1, \ldots, x_k from S, then $\Pr[p(x_1, \ldots, x_k) = 0] \leq d/|S|$.

Proof. A $\leq d$-degree single-variable polynomial has at most d roots. Continue by induction over the number of variables.

Algorithm for polynomial identity testing. Select a sufficiently large S. Randomly pick x_1, \ldots, x_k from S. Evaluate the arithmetic expression.
Class ZPP

- Let p_i be the probability that $M(x)$ stops in exactly i steps.
- The expected running time of $M(x)$ is $1 \cdot p_1 + 2 \cdot p_2 + \cdots$.
- $L \in \text{ZPP}$ if there exists a PTM M, such that
 - M runs in expected polynomial time;
 - If $x \in L$ then $\Pr[M(x) = 1] = 1$.
 - If $x \not\in L$ then $\Pr[M(x) = 1] = 0$.
- Such M is called a \text{Las Vegas algorithm} for L.
ZPP = RP ∩ coRP

Theorem. ZPP = RP ∩ coRP.

Theorem (Obvious) RP ⊆ NP. coRP ⊆ coNP. P ⊆ ZPP.
Handling biased coins

Let the bits in the randomness tape still be independent of each other. Let $0 < p < 1$.

- If bit 1 has probability p, then a tape where bit 1 has probability $1/2$ can still be simulated.

- If bit 1 has probability $1/2$, then a tape where bit 1 has probability p can still be simulated.

 ◆ The bits of p must be computable in polynomial time.
Class BPP

The PTM M recognizes language L with bounded error if for all $x \in \{0, 1\}^*$:

$$x \in L \iff \Pr[M(x) = 1] \geq \frac{2}{3}$$

$$x \not\in L \iff \Pr[M(x) = 1] \leq \frac{1}{3}$$

Class BPP is the set of all languages recognizable by polynomial-time PTM-s with bounded error.
Theorem.

- Let X_1, \ldots, X_n be mutually independent random variables with values from $\{0, 1\}$. Let $X = X_1 + \cdots + X_n$.

- Let $\mu = \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$.

- Let $\delta > 0$. Then

\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{1 + \delta}} \right)^\mu
\]
\[
\Pr[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}} \right)^\mu
\]
Some lemmas

- If X_1, \ldots, X_n are mutually independent random variables then
 \[\mathbb{E}[\prod_{i=1}^{n} X_i] = \prod_{i=1}^{n} \mathbb{E}[X_i]. \]

- If X is a random variable then
 \[\Pr[X \geq k \cdot \mathbb{E}[X]] \leq 1/k. \]
 (Markov’s inequality)
Proof of Chernoff bound

Let \(p_i = \Pr[X_i = 1] \). Let \(t = \ln(1 + \delta) \). Let \(P = \Pr[X \geq (1 + \delta)\mu] \).

\[
E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}] = \prod_{i=1}^{n} (1 - p_i + p_i e^t) \leq \prod_{i=1}^{n} \exp(p_i(e^t - 1)) = e^{\mu \delta} \\
\]

\[
P = \Pr[e^{tX} \geq e^{t(1+\delta)\mu}] \leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \leq \frac{e^{\mu \delta}}{(1 + \delta)(1+\delta)\mu}
\]
For every $\varepsilon > 0$, define the class BPP_ε as the set of languages L, such that exists poly-time PTM M, such that

\[
\begin{align*}
x \in L &\iff \Pr[M(x) = 1] \geq 1 - \varepsilon \\
x \not\in L &\iff \Pr[M(x) = 1] \leq \varepsilon
\end{align*}
\]

Theorem. If $0 < \varepsilon < 1/2$ then $\text{BPP} = \text{BPP}_\varepsilon$.

For any function $e : \mathbb{N} \rightarrow \mathbb{R}_+$ define the class BPP_e as the set of languages L, such that exists poly-time PTM M, such that

$$x \in L \iff \Pr[M(x) = 1] \geq 1 - e(|x|)$$

$$x \not\in L \iff \Pr[M(x) = 1] \leq e(|x|)$$

Theorem. $\text{BPP}_{\lambda n.1/2 - 1/poly(n)} = \text{BPP} = \text{BPP}_{\lambda n.2^{-poly(n)}}$

Exercise. What is the corresponding result for RP?

BPP is the model of **efficient computation** if random choices are allowed.
Strict vs. expected running time

Let M be a PTM that recognizes a language L in expected polynomial time as follows:

\[
\begin{align*}
 x \in L & \iff \Pr[M(x) = 1] \geq p \\
 x \not\in L & \iff \Pr[M(x) = 1] \leq q.
\end{align*}
\]

Then for any ε, there exists a PTM M' that recognizes L in strict polynomial time as follows:

\[
\begin{align*}
 x \in L & \iff \Pr[M(x) = 1] \geq p - \varepsilon \\
 x \not\in L & \iff \Pr[M(x) = 1] \leq q + \varepsilon.
\end{align*}
\]
Theorem. BPP ⊆ P/poly.

Proof. Let $L \in \text{BPP} = \text{BPP}_{\lambda n, 2^{-2n}}$. Let M recognize L with error probability 2^{-2n}.

- For each $x \in \{0, 1\}^n$, $M(x, \alpha)$ returns whether $x \in L$ for a vast majority of strings α.
- Let E_x be the set of strings α where $M(x, \alpha)$ gives the wrong answer.
- There is a string $\alpha_n \notin \bigcup_{x \in \{0, 1\}^n} E_x$.
- The prefix of α_n (bounded by running time of M) is a suitable advice for M.

Corollary. If SAT \in BPP then PH $= \Sigma_2^p$.
\[
\text{BPP} \subseteq \Sigma^p_2 \cap \Pi^p_2
\]

Theorem. \(\text{BPP} \subseteq \Sigma^p_2 \cap \Pi^p_2 \)

Proof. Let \(M \) accept \(L \in \text{BPP} \) with error probability \(\lambda_n.2^{-n} \). Let \(f \) be running time of \(M \).

- For \(x \in \{0, 1\}^n \), let \(S_x \subseteq \{0, 1\}^{f(n)} \) be the set of strings \(\alpha \), such that \(M(x, \alpha) \) accepts.
 - \(|S_x| \geq (1 - 2^{-n}) \cdot 2^{f(n)} \) or \(|S_x| \leq 2^{f(n)-n} \).

- For \(u \in \{0, 1\}^{f(n)} \), denote \(u \oplus S = \{u \oplus \alpha | \alpha \in S\} \).

- Let \(k = \lceil f(n)/n \rceil + 1 \).

- If \(|S_x| \leq 2^{f(n)-n} \)
 - \(|S_x| \geq (1 - 2^{-n})2^{f(n)} \), then for all exists \(\{u_1, \ldots, u_k\} \subseteq \{0, 1\}^{f(n)}: \)
 \[
 \bigcup_{j=1}^{k}(u_j \oplus S_x) \neq \{0, 1\}^{f(n)}.
 \]

- \(x \in L \iff \exists u_1, \ldots, u_k \forall \alpha: \bigvee M(x, \alpha \oplus u_j) \). A \(\Sigma_2 \)-procedure.
The classes **RL and BPL**

- Same as RP and BPP, but for log-space, not poly-time.

- RL is noteworthy for being known to contain the reachability problem in **undirected** graphs.

 ◆ A couple of years ago, Omer Reingold showed that undirected reachability is in L.