Probabilistic computation



Probabilistic computations

Consider the Turing machines M in the following form:
m |t has an input tape;

m [t has a read-only, no-left-move randomness tape, where each cell
(up to infinity) contains either 0 or 1;

m [t has internal state, working tapes,. ..
m |t accepts through final states.

We say Pr(M(z) = 1] =p if Pr|M(z,a) =1|a < Uy] = p.
m U, is the uniform probability distribution on {0, 1}~.

[0 Each bit will be either 0 or 1 with equal probability, and
independently of all other bits.
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Classes RP, coRP

The PTM M Monte-Carlo recognizes language L if for all x € {0, 1}*:

r € L < Pr|M(x)
v ¢ L < PrlM(z)

1]>1/2
1]=0

Class RP is the set of all languages Monte-Carlo recognizable by
polynomial-time PTM-s.

m Running time is polynomial wrt. the length of the first argument of
M.

L € coRP if exists a poly-time PTM M, such that for all x € {0, 1}*:

relL<sPrMx)=1=1
r¢ L < PrM(zx)=1]<1/2
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Example problem in coRP

An arithmetic expression F over variables 1, ..., x; is one of
m Variable z;;
m Constant n € Z;
m Expression E; + Fsy, By — Ey, B - Fs.

Given expression E. Is it identical to 07

This is the polynomial identity testing problem. We do not know how to
do it in P.
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Schwartz-Zippel lemma

Theorem. Let p be a non-zero k-variable < d-degree polynomial over
integers. Let S be a finite subset of Z. If we randomly uniformly pick
Ty, ...,2, from S, then Prip(xy,...,21) = 0] < d/|S|.

Proof. A < d-degree single-variable polynomial has at most d roots.
Continue by induction over the number of variables.

Algorithm for polynomial identity testing. Select a sufficiently large S.
Randomly pick 4, ..., x; from S. Evaluate the arithmetic expression.
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Class ZPP

Let p; be the probability that M (x) stops in exactly ¢ steps.

The expected running time of M(x)is1-py +2-py+---.
L € ZPP if there exists a PTM M, such that

[0 M runs in expected polynomial time;
O If x € L then Pr[M(x) =1| = 1.
O If x ¢ L then Pr[M(x) =1] =0.

Such M is called a Las Vegas algorithm for L.
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/PP = RP M coRP

Theorem. ZPP = RP N coRP.

Theorem (Obvious) RP C NP. coRP C coNP. P C ZPP.
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Handling biased coins

Let the bits in the randomness tape still be independent of each other.
Let 0 < p < 1.

m |f bit 1 has probability p, then a tape where bit 1 has probability
1/2 can still be simulated.

m If bit 1 has probability 1/2, then a tape where bit 1 has probability
p can still be simulated.

[0 The bits of p must be computable in polynomial time.
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Class BPP

The PTM M recognizes language L with bounded error if for all
r e {0,1}*

r € L < Pr|M(x)
v ¢ L < PrlM(z)

1] >2/3
11 <1/3

Class BPP is the set of all languages recognizable by polynomial-time
PTM-s with bounded error.
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Chernoff bounds

Theorem.

m Let X4,..., X, be mutually independent random variables with
values from {0,1}. Let X = X +--- + X,,.

m Let p=E[X]| = Z:;l E[X;].
m Let 0 > 0. Then

PrilX > (14 9)y|

PriX < (1—90)u]
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Some lemmas

m |f Xy,..., X, are mutually independent random variables then
E[H?ﬂ Xz’] — H?:1 E[Xz]

m If X is a random variable then Pr| X > k- E[X]] < 1/k.
(Markov’s inequality)
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Proof of Chernoff bound

Let p; = Pr|X; =1]. Lett =In(1+9). Let P =Pr|X > (1 +9)ul.

Ble] — [[EE) = [[0-p+piet) < [[explnte’ - 1)
1=1 1=1 1=1
p— e'u(s
E[e!] eHo
_ tX t(149)u
P = PI’[@ > € ] < et(1+0)p < (1 _|_5)(1—|—5),u
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Role of constants in defining RP and BPP

For every € > 0, define the class BPP, as the set of languages L, such
that exists poly-time PTM M, such that

rel < PriMz)=1>1—¢
rZ¢L<PriM(z)=1]<e¢

Theorem. If 0 < ¢ < 1/2 then BPP = BPP..
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More general ¢

For any function e : N — R, define the class BPP, as the set of
languages L, such that exists poly-time PTM M, such that

r e L < Pr|M(x) =1]
r & L < Pr|M(x) =1]

Theorem. BPP)\n.l/Q_l/pOly(n) = BPP = BPP)\n.Q—poly(n)

Exercise. What is the corresponding result for RP?

BPP is the model of efficient computation if random choices are allowed.
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Strict vs. expected running time

Let M be a PTM that recognizes a language L in expected polynomial
time as follows:

rel < PriM(x)=1] >p
r ¢ L<PriMx)=1<gq .

Then for any ¢, there exists a PTM M’ that recognizes L in strict
polynomial time as follows:

r €L < Pr|M(x)
r ¢ L < Pr|M(z)

1] >p—c¢
1] <qg+e .
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BPP C P/poly

Theorem. BPP C P/poly.

Proof. Let L € BPP = BPP,,, 5-2». Let M recognize L with error
probability 2727,

m For each x € {0,1}", M(z,«) returns whether = € L for a vast
majority of strings a.

m Let £, be the set of strings a where M (z, «) gives the wrong
answer.

m There is a string a, & U, 0110 B

m The prefix of a,, (bounded by running time of M) is a suitable
advice for M.

Corollary. If SAT € BPP then PH = 3.
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BPP C SN 1T
Theorem. BPP C ¥ N 11

Proof. Let M accept L € BPP with error probability An.27". Let f be
running time of M.

m For z € {0,1}", let S, C {0,1}/™ be the set of strings a, such
that M (x, o) accepts.

0 |S,] > (1 —27") -2/ or |S,| < 2/(W)=n,

m Foruc {0,13/™ denoteu® S ={udalac S}
mletk=[f(n)/n]+1.

S, | < 2/(m)=n for all .
m If S| > (1 272/ cthen Lo {un o} C {0, 1}/
U@ S:) 7 {0,110,

m el & Juy,...,uVa: \/ M(x,a® u;). A Xo-procedure.
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The classes RL and BPL

m Same as RP and BPP, but for log-space, not poly-time.

m RL is noteworthy for being known to contain the reachability
problem in undirected graphs.

[0 A couple of years ago, Omer Reingold showed that undirected
reachability is in L.
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