Space complexity

Space complexity classes

A language $L \subseteq \{0,1\}^*$ belongs to the class $\mathsf{DSPACE}(f),$ if

 \blacksquare there exists a DTM M that accepts L, and a constant c,

 \blacksquare such that M(x) writes to at most $c \cdot f(|x|)$ cells on its work tapes.

The class NSPACE(f) is defined similarly for nondeterministic TMs.

$$\mathsf{PSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{DSPACE}(\lambda n. n^c) \qquad \mathsf{L} = \mathsf{DSPACE}(\lambda n. \log n)$$
$$\mathsf{NPSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{NSPACE}(\lambda n. n^c) \qquad \mathsf{NL} = \mathsf{NSPACE}(\lambda n. \log n)$$

Examples

SAT \in DSPACE $(\lambda n.n)$

■ PATH = { $\langle G, s, t \rangle | G \text{ is dir. graph with path from } s \text{ to } t$ } $\in \mathsf{NL}$.

Computing a function and usage of space

- $f: \{0,1\}^* \to \{0,1\}^*$. How to define that it is computable in space g?
- Output is also written on a work tape, how to (dis)count it?

Two possibilities:

- The machine has an extra output tape. It is write-only and the head can only move to the right.
- Languages L_i and L'_i must be in DSPACE(g) for all i, where

$$\bullet L_i = \{x \mid |f(x)| \ge i\}$$

•
$$L'_i = \{x \mid x \in L_i \land i \text{-th bit of } f(x) \text{ is } 1\}$$

Exercise. If $g \in \Omega(\lambda n, \log n)$ then the two variants are the same.

Inclusions and separations

Theorem. DTIME $(f) \subseteq DSPACE(f) \subseteq NSPACE(f) \subseteq \bigcup_{c \in \mathbb{N}} DTIME(\lambda n.c^{f(n)})$

Exercise. What is the space complexity of simulating a TM?

Theorem. If $f \in o(g)$ then $\mathsf{DSPACE}(f) \subsetneq \mathsf{DSPACE}(g)$.

Corollary. $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$ We believe all inclusions are strict, but we know only $L \subsetneq PSPACE$.

PSPACE-completeness

A language L is PSPACE-hard if for any $L' \in PSPACE$ we have $L' \leq_{m}^{P} L$. Language L is PSPACE-complete if it is PSPACE-hard and belongs to PSPACE.

Theorem. The language

```
\{\langle M, x, 1^n \rangle \mid \mathsf{DTM} \ M \text{ accepts } x \text{ in space } n\}
```

is PSPACE-complete.

Quantified Boolean formulas

A quantified Boolean formula is one of

$$\phi = x \qquad FV(\phi) = \{x\}$$

$$\phi = \neg \phi' \qquad FV(\phi) = FV(\phi')$$

$$\phi = \phi_1 \text{ op } \phi_2 \qquad FV(\phi) = FV(\phi_1) \cup FV(\phi_2)$$

$$\phi = Qx \phi' \qquad FV(\phi) = FV(\phi') \setminus \{x\}$$

where Q is either \forall or \exists .

Evaluating QBF-s

 ϕ defines a Boolean function $\llbracket \phi \rrbracket$ from $FV(\phi) \to \mathbb{B}$ to \mathbb{B} .

$$\begin{split} \llbracket x \rrbracket(V) &= V(x) \\ \llbracket \neg \phi \rrbracket(V) &= \neg (\llbracket \phi \rrbracket(V)) \\ \llbracket \phi_1 \text{ op } \phi_2 \rrbracket(V) &= \llbracket \phi_1 \rrbracket(V) \llbracket \text{ op } \rrbracket \llbracket \phi_2 \rrbracket(V) \\ \llbracket \forall x \phi \rrbracket(V) &= \llbracket \phi \rrbracket(V[x \mapsto \mathsf{true}]) \land \llbracket \phi \rrbracket(V[x \mapsto \mathsf{false}]) \\ \llbracket \exists x \phi \rrbracket(V) &= \llbracket \phi \rrbracket(V[x \mapsto \mathsf{true}]) \lor \llbracket \phi \rrbracket(V[x \mapsto \mathsf{false}]) \end{split}$$

Let
$$\mathsf{TQBF} = \{x \text{ is } \mathsf{QBF} | FV(x) = \emptyset, [x]() = \mathsf{true} \}$$

All quantifiers can be moved to the front of the formula without increasing the length.

TQBF is PSPACE-complete

Theorem. TQBF is PSPACE-complete.

Lemma. TQBF \in PSPACE.

Lemma. TQBF is PSPACE-hard. We reduce $\{\langle M, x, 1^n \rangle | \text{DTM } M \text{ accepts } x \text{ in space } n\}$ to TQBF

Recall succinct representations of computation graphs:

- A configuration encoded in m bits, where $m \leq p(n)$.
- Formula $S(u_1, \ldots, u_m)$, expressing "being a conf."
- Formula $R(u_1, \ldots, u_m, u'_1, \ldots, u'_m)$ expressing $C \to C'$.
- Formulas Φ° , Φ^{\bullet} expressing sets of initial and final configurations.
- Size of everything bounded by p(n).

Reachability

We want to write the formula $R_i(u_1, \ldots, u_m, u'_1, \ldots, u'_m)$ expressing $C \xrightarrow{*} C'$ in at most 2^i steps.

$$R_0(u_1, \dots, u_m, u'_1, \dots, u'_m) =$$

$$R(u_1, \dots, u_m, u'_1, \dots, u'_m) \lor (u_1 = u'_1 \land \dots \land u_m = u'_m)$$

$$R_{i}(u_{1}, \dots, u_{m}, u'_{1}, \dots, u'_{m}) = \exists u''_{1}, \dots, u''_{m} : S(u''_{1}, \dots, u''_{m}) \land R_{i-1}(u_{1}, \dots, u_{m}, u''_{1}, \dots, u''_{m}) \land R_{i-1}(u''_{1}, \dots, u''_{m}, u'_{1}, \dots, u''_{m})$$

Now $|R_i| = O(2^n) \cdot |R|$. This is bad.

$$R_i(u_1, \dots, u_m, u'_1, \dots, u'_m) = \exists u''_1, \dots, u''_m : S(u''_1, \dots, u''_m) \land \forall v_1, \dots, v_m, v'_1, \dots, v'_m : \left(\left(\bigwedge_{k=1}^m v_k = u_k \land \bigwedge_{k=1}^m v'_k = u''_k \right) \lor \\ \left(\bigwedge_{k=1}^m v_k = u''_k \land \bigwedge_{k=1}^m v'_k = u'_k \right) \right) \Rightarrow R_{i-1}(v_1, \dots, v_m, v'_1, \dots, v'_m)$$

Encoding TM $\,M$

Given M, x, 1^n , we

Construct m, S, R, Φ° , Φ^{\bullet} .

• Let n' be such, that M has $\leq 2^{n'}$ configurations of size n.

Output

$$\exists u_1, \ldots, u_m, u'_1, \ldots, u'_m : \Phi^{\circ}(u_1, \ldots, u_m) \land \\ \Phi^{\bullet}(u'_1, \ldots, u'_m) \land R_{n'}(u_1, \ldots, u_m, u'_1, \ldots, u'_m)$$

TQBF and NPSPACE

Theorem. TQBF is NPSPACE-complete. **Exercise.** Prove it. **Corollary** PSPACE = NPSPACE.

PATH in deterministic space

Theorem (Savitch). PATH \in DSPACE $(\lambda n. \log^2 n)$.

Proof. Define the function REACH(u, v, i): There is a path from u to v of length at most 2^i .

 $\mathsf{REACH}(u, v, i) = \exists w : \mathsf{REACH}(u, w, i - 1) \land \mathsf{REACH}(w, v, i - 1).$

Each invocation of REACH needs to store a constant number of vertices. The third argument is initially $\lceil \log n \rceil$.

Corollary. NSPACE $(f) \subseteq$ DSPACE $(\lambda n. f(n)^2)$ for any space-constructible function $f \in \Omega(\lambda n. \log n)$.

PSPACE and game-playing

Imagine a two-player game with perfect information

- ♦ A set of possible states, a starting state, possible ending states with indication who won and lost.
- ◆ For each state: possible legal moves for both players.
- ◆ Both players always know the state the game is in.

■ When does the first player have a winning strategy?

 $\exists my move \ \forall opp.'s move \ \exists my move \ \ldots \ I \ win!$ Similar to TQBF.

log-space reductions

Definition. Language L is log-space reducible to language L' (denote $L \leq_{m}^{L} L'$) if

 \blacksquare there exists a function $f:\{0,1\}^* \to \{0,1\}^*,$ such that

• f(x) is computable in space $O(\log |x|)$

•
$$x \in L$$
 iff $f(x) \in L'$.

Theorem. $\leq_{\mathrm{m}}^{\mathrm{L}}$ is transitive. If $L \leq_{\mathrm{m}}^{\mathrm{L}} L'$ and $L' \in \mathsf{L}$ then $L \in \mathsf{L}$. **Exercise.** Prove it.

NL-completeness

A language L is NL-hard if for any $L' \in NL$ we have $L' \leq_{m}^{L} L$. Language L is NL-complete if it is NL-hard and belongs to NL.

Theorem. PATH is NL-complete. We already know PATH \in NL. Hence only hardness must be shown.

Log-space reduction to PATH

- Let M be a NTM working in space $O(\log n)$.
- We can compute its adjacency matrix in space $O(\log n)$.
- I.e. given NTM M and two configurations C, C' of size $O(\log n)$, we have to decide in space $O(\log n)$ whether $C \to C'$.

two-way finite automata

Same power as (one-way) finite automata.

Least amount of usable memory

Theorem. If $s \in o(\lambda n. \log \log n)$ then DSPACE(s) = DSPACE(0). Proof on blackboard...

 $L = \{ \# \mathsf{bit}(1) \# \mathsf{bit}(2) \# \cdots \mathsf{bit}(n) \# \mid n \in \mathbb{N} \}$

Exercise. Show that $L \in \mathsf{DSPACE}(\lambda n. \log \log n) \setminus \mathsf{DSPACE}(0)$.

Complexity classes of complementary languages

Let ${\mathfrak C}$ be a complexity class. The class co ${\mathfrak C}$ is

 $\operatorname{co} \mathcal{C} = \{ L^{\operatorname{c}} \, | \, L \in \mathcal{C} \}$.

- For any f we have DTIME(f) = coDTIME(f) and DSPACE(f) = coDSPACE(f).
- $\blacksquare \ coP = P. \ coPSPACE = PSPACE. \ coL = L.$
- NP and coNP are thought to be different.
 - P = NP would imply NP = coNP. Opposite implication is not known.

Functions computable by NTMs

An NTM M computes the function $f: \{0,1\}^* \to \{0,1\}^*$, if on input x

 \blacksquare each computation path of M ends by

- \blacklozenge M outputting f(x), or
- M giving up (outputting "don't know")
- at least one computation path of M ends by outputting f(x).

Number of reachable vertices

Given graph G with n vertices and a vertex s. How many vertices can be reached from s?

Theorem (Immerman-Szelepscényi). This can be computed by a NTM in space $O(\log n)$.

Let S(k) be the set of vertices reachable from s in at most k steps. The following algorithm can be used to compute S(n-1).

```
|S(0)| := 1
for k := 1 to n - 1 do
compute |S(k)| from |S(k - 1)|
```

$$\begin{split} |S(0)| &:= 1 \\ \text{for } k := 1 \text{ to } n - 1 \text{ do} \\ |S(k)| &:= 0 \\ \text{for } u \in V(G) \text{ do} \\ b &:= (u \stackrel{?}{\in} S(k)) \\ \text{if } b \text{ then } |S(k)| &:= |S(k)| + 1 \end{split}$$

$$\begin{split} |S(0)| &:= 1 \\ \text{for } k := 1 \text{ to } n - 1 \text{ do} \\ |S(k)| &:= 0 \\ \text{for } u \in V(G) \text{ do} \\ m &:= 0 \quad b := \text{false} \\ \text{for } v \in V(G) \text{ do} \\ b' &:= (v \stackrel{?}{\in} S(k - 1)) \quad -- \text{ nondeterministic procedure} \\ \text{if } b' \text{ then} \\ m &:= m + 1 \\ \text{if } (v, u) \in E(G) \text{ then } b := \text{true} \\ \text{if } m < |S(k - 1)| \text{ then give up} \\ \text{if } b \text{ then } |S(k)| &:= |S(k)| + 1 \end{split}$$

```
|S(0)| := 1
for k := 1 to n-1 do
   |S(k)| := 0
   for u \in V(G) do
      m := 0 b := false
      for v \in V(G) do
         w_0 := s \qquad b' := \mathsf{true}
         for p := 1 to k - 1 do
            choose w_p \in V(G)
            b' := b' \land (w_{p-1}, w_p) \in E(G)
         if b' \wedge (w_{k-1} = v) then
            m := m + 1
            if (v, u) \in E(G) then b := true
      if m < |S(k-1)| then give up
      if b then |S(k)| := |S(k)| + 1
```

$\mathsf{NSPACE}(f)$ and $\mathsf{coNSPACE}(f)$

Theorem. If f is a space-computable function, and $f \in \Omega(\lambda n. \log n)$, then NSPACE(f) = coNSPACE(f). **Proof sketch.**

- Let NTM M working in space f decide $L \subseteq \{0, 1\}^*$. We need machine M' that decides L^c .
- The computation graph of a NTM M working in space f has at most $c^{f(n)}$ vertices for some c.
- M' uses previous algorithm to compute $|S(c^{f(n)})|$. This takes $c' \cdot f(n)$ space.
- It checks all configurations of M for being included in $S(c^{f(n)})$.
 - If accepting configuration found, then M' rejects.
 - If algorithm gives up, then M' rejects.
 - If no accepting configuration found, M' accepts.

P-completeness

Defined through \leq_{m}^{L} -reduction.

CIRCUITVALUE = $\{ \langle C, b_1, \dots, b_k \rangle \mid$ Boolean circuit C evaluates to true on inputs $b_1, \dots, b_k \}$

Theorem. CIRCUITVALUE is P-complete.

Oracle Turing Machines

An Oracle TM (det. or non-det.) M is a TM with

- ◆ A designated tape the query tape
- Three designated states q_{query} , q_{yes} , q_{no} .
- An oracle \mathcal{O} is a subset of $\{0,1\}^*$.
- Whenever M running together with O (denoted M^O) goes into state q_{query},
 - \blacklozenge the contents of query tape is interpreted as a bit-string x;
 - M goes to state q_{yes} if $x \in \mathcal{O}$. Otherwise M goes to state q_{no} .
 - ◆ This takes a single step.

An oracle O gives us relativized complexity classes P^{O} , NP^{O} , etc.

Limits of diagonalization

The diagonalization proofs used the facts that

- ◆ there is an efficient mapping between bit-strings and TMs
- ◆ efficient universal TMs exist.
- The proofs did not really consider the internal workings of the TMs M_i from the enumeration of all TMs.
- All these proofs would go through also for oracle TMs.
- Can a similar proof decide $P \stackrel{?}{=} NP$.

Theorem. There exist $A, B \subseteq \{0, 1\}^*$, such that $P^A = NP^A$ and $P^B \neq NP^B$.

The language EXPCOM

Consider the language

 $\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \, | \, \mathsf{DTM} \ M \text{ accepts } x \text{ in } \leq 2^n \text{ steps} \}$.

This is a complete language for exponential-time computation.

- A computation in NP^{EXPCOM} on input of length n would
 - non-deterministically choose a certificate of length $\leq p(n)$;
 - (make up to p(n) steps), solve up to p(n) problems, each requiring up to 2^{p(n)} steps.

A deterministic algorithm would need at most $2^{p(n)} \cdot p(n) \cdot 2^{p(n)} = 2^{(p(n))^2 \log p(n)}$ steps. Fits in EXPCOM.

Thus $P^{\text{EXPCOM}} = \text{NP}^{\text{EXPCOM}}$.

The oracle B

For any $B \subseteq \{0,1\}^*$ let

$$U_B = \{1^n \,|\, \exists x : |x| = n \land x \in B\}$$
.

For any B we have $U_B \in NP^B$. Exercise. Why?

We'll now construct a language B, such that $U_B \notin \mathsf{P}^B$.

The oracle B

Let M_1, M_2, \ldots be the enumeration of oracle DTM-s. We will now define partial functions $\varphi_0, \varphi_1, \ldots$ from $\{0, 1\}^*$ to $\{\text{yes}, \text{no}\}$, such that

 $\blacksquare \varphi_0$ is always undefined.

Each φ_i is defined only on a finite subset of $\{0,1\}^*$.

If $\varphi_i(x)$ is defined, then $\varphi_{i+1}(x) = \varphi_i(x)$.

For each $x \in \{0,1\}^*$ there exists *i*, such that $\varphi_i(x)$ is defined.

In the end we define

$$B = \{ x \in \{0, 1\}^* \, | \, \exists i : \varphi_i(x) = \mathsf{yes} \} .$$

Let t be a superpolynomial function, such that $\forall n : t(n) < 2^n$

Constructing φ_{i+1}

 $\blacksquare \text{ Set } \varphi_{i+1} = \varphi_i.$

• Let $n = (\max_{\varphi_i(x) \text{ is defined }} |x|) + 1$.

Run $M_{i+1}^{(\cdot)}(1^n)$ for t(n) steps. If M_i queries for x, then

• If $\varphi_i(x)$ is defined, then answer $\varphi_i(x)$.

• If $\varphi_i(x)$ is not defined, then answer no.

• Set
$$\varphi_{i+1} = \varphi_{i+1}[x \mapsto \operatorname{no}].$$

If $M_{i+1}^{(\cdot)}$ stops in t(n) steps, then

• If $M_{i+1}^{(\cdot)}$ accepts, then set $\varphi_{i+1} = \varphi_{i+1}[\{0,1\}^n \mapsto \mathsf{no}]$

• If $M_{i+1}^{(\cdot)}$ rejects then pick $x \in \{0,1\}^n$ that $M_{i+1}^{(\cdot)}$ did not query, set $\varphi_{i+1} = \varphi_{i+1}[x \mapsto \text{yes}]$.