
Space complexity

Space complexity classes

2 / 34

A language L ⊆ {0, 1}∗ belongs to the class DSPACE(f), if

■ there exists a DTM M that accepts L, and a constant c,

■ such that M(x) writes to at most c · f(|x|) cells on its work tapes.

The class NSPACE(f) is defined similarly for nondeterministic TMs.

PSPACE =
⋃

c∈N

DSPACE(λn.nc) L = DSPACE(λn. log n)

NPSPACE =
⋃

c∈N

NSPACE(λn.nc) NL = NSPACE(λn. log n)

Examples

3 / 34

■ SAT ∈ DSPACE(λn.n)

■ PATH = {〈G, s, t〉 |G is dir. graph with path from s to t} ∈ NL.

Computing a function and usage of space

4 / 34

■ f : {0, 1}∗ → {0, 1}∗. How to define that it is computable in space
g?

■ Output is also written on a work tape, how to (dis)count it?

Two possibilities:

■ The machine has an extra output tape. It is write-only and the
head can only move to the right.

■ Languages Li and L′

i must be in DSPACE(g) for all i, where

◆ Li = {x | |f(x)| ≥ i}

◆ L′

i = {x |x ∈ Li ∧ i-th bit of f(x) is 1}

Exercise. If g ∈ Ω(λn. log n) then the two variants are the same.

Inclusions and separations

5 / 34

Theorem.
DTIME(f) ⊆ DSPACE(f) ⊆ NSPACE(f) ⊆

⋃

c∈NDTIME(λn.cf(n))

Exercise. What is the space complexity of simulating a TM?

Theorem. If f ∈ o(g) then DSPACE(f) (DSPACE(g).

Corollary. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE
We believe all inclusions are strict, but we know only L (PSPACE.

PSPACE-completeness

6 / 34

A language L is PSPACE-hard if for any L′ ∈ PSPACE we have
L′ ≤P

m L. Language L is PSPACE-complete if it is PSPACE-hard and
belongs to PSPACE.
Theorem. The language

{〈M,x, 1n〉 |DTM M accepts x in space n}

is PSPACE-complete.

Quantified Boolean formulas

7 / 34

A quantified Boolean formula is one of

φ = x FV (φ) = {x}

φ = ¬φ′ FV (φ) = FV (φ′)

φ = φ1 op φ2 FV (φ) = FV (φ1) ∪ FV (φ2)

φ = Qxφ′ FV (φ) = FV (φ′)\{x}

where Q is either ∀ or ∃.

Evaluating QBF-s

8 / 34

φ defines a Boolean function [[φ]] from FV (φ) → B to B.

[[x]](V) = V (x)

[[¬φ]](V) = ¬([[φ]](V))

[[φ1 op φ2]](V) = [[φ1]](V) [[op]] [[φ2]](V)

[[∀xφ]](V) = [[φ]](V [x 7→ true]) ∧ [[φ]](V [x 7→ false])

[[∃xφ]](V) = [[φ]](V [x 7→ true]) ∨ [[φ]](V [x 7→ false])

Let TQBF = {x is QBF |FV (x) = ∅, [[x]]() = true}

All quantifiers can be moved to the front of the formula without
increasing the length.

TQBF is PSPACE-complete

9 / 34

Theorem. TQBF is PSPACE-complete.

Lemma. TQBF ∈ PSPACE.

Lemma. TQBF is PSPACE-hard.
We reduce {〈M,x, 1n〉 |DTM M accepts x in space n} to TQBF

■ Recall succinct representations of computation graphs:

◆ A configuration encoded in m bits, where m ≤ p(n).

◆ Formula S(u1, . . . , um), expressing “being a conf.”

◆ Formula R(u1, . . . , um, u
′

1, . . . , u
′

m) expressing C → C ′.

◆ Formulas Φ◦, Φ• expressing sets of initial and final
configurations.

◆ Size of everything bounded by p(n).

Reachability

10 / 34

We want to write the formula Ri(u1, . . . , um, u
′

1, . . . , u
′

m) expressing

C
∗

→ C ′ in at most 2i steps.

R0(u1, . . . , um, u
′

1, . . . , u
′

m) =

R(u1, . . . , um, u
′

1, . . . , u
′

m) ∨ (u1 = u′

1 ∧ · · · ∧ um = u′

m)

Ri(u1, . . . , um, u
′

1, . . . , u
′

m) = ∃u′′

1, . . . , u
′′

m : S(u′′

1, . . . , u
′′

m)∧

Ri−1(u1, . . . , um, u
′′

1, . . . , u
′′

m) ∧Ri−1(u
′′

1, . . . , u
′′

m, u
′

1, . . . , u
′

m)

Now |Ri| = O(2n) · |R|. This is bad.

Ri(u1, . . . , um, u
′

1, . . . , u
′

m) = ∃u′′

1, . . . , u
′′

m : S(u′′

1, . . . , u
′′

m)∧

∀v1, . . . , vm, v
′

1, . . . , v
′

m :
((

∧m

k=1
vk = uk ∧

∧m

k=1
v′k = u′′

k

)

∨
(

∧m

k=1
vk = u′′

k ∧
∧m

k=1
v′k = u′

k

))

⇒ Ri−1(v1, . . . , vm, v
′

1, . . . , v
′

m)

Encoding TM M

11 / 34

Given M , x, 1n, we

■ Construct m, S, R, Φ◦, Φ•.

■ Let n′ be such, that M has ≤ 2n
′

configurations of size n.

■ Output

∃u1, . . . , um, u
′

1, . . . , u
′

m : Φ◦(u1, . . . , um)∧

Φ•(u′

1, . . . , u
′

m) ∧Rn′(u1, . . . , um, u
′

1, . . . , u
′

m)

TQBF and NPSPACE

12 / 34

Theorem. TQBF is NPSPACE-complete.
Exercise. Prove it.
Corollary PSPACE = NPSPACE.

PATH in deterministic space

13 / 34

Theorem (Savitch). PATH ∈ DSPACE(λn. log2 n).

Proof. Define the function REACH(u, v, i): There is a path from u to v

of length at most 2i.

REACH(u, v, i) = ∃w : REACH(u,w, i− 1) ∧ REACH(w, v, i − 1).

Each invocation of REACH needs to store a constant number of vertices.
The third argument is initially ⌈logn⌉.

Corollary. NSPACE(f) ⊆ DSPACE(λn.f(n)2) for any
space-constructible function f ∈ Ω(λn. log n).

PSPACE and game-playing

14 / 34

■ Imagine a two-player game with perfect information

◆ A set of possible states, a starting state, possible ending states
with indication who won and lost.

◆ For each state: possible legal moves for both players.

◆ Both players always know the state the game is in.

■ When does the first player have a winning strategy?

∃my move ∀opp.’s move ∃my move . . . I win!

Similar to TQBF.

log-space reductions

15 / 34

Definition. Language L is log-space reducible to language L′ (denote
L ≤L

m L′) if

■ there exists a function f : {0, 1}∗ → {0, 1}∗, such that

◆ f(x) is computable in space O(log |x|)

◆ x ∈ L iff f(x) ∈ L′.

Theorem. ≤L
m is transitive. If L ≤L

m L′ and L′ ∈ L then L ∈ L.
Exercise. Prove it.

NL-completeness

16 / 34

A language L is NL-hard if for any L′ ∈ NL we have L′ ≤L
m L. Language

L is NL-complete if it is NL-hard and belongs to NL.

Theorem. PATH is NL-complete.
We already know PATH ∈ NL. Hence only hardness must be shown.

Log-space reduction to PATH

17 / 34

■ Let M be a NTM working in space O(log n).

■ We can compute its adjacency matrix in space O(log n).

■ I.e. given NTM M and two configurations C,C ′ of size O(log n),
we have to decide in space O(log n) whether C → C ′.

DSPACE(0)

18 / 34

two-way finite automata

Same power as (one-way) finite automata.

Least amount of usable memory

19 / 34

Theorem. If s ∈ o(λn. log log n) then DSPACE(s) = DSPACE(0).
Proof on blackboard. . .

L = {#bit(1)#bit(2)# · · · bit(n)# |n ∈ N}

Exercise. Show that L ∈ DSPACE(λn. log log n)\DSPACE(0).

Complexity classes of complementary

languages

20 / 34

Let C be a complexity class. The class coC is

coC = {Lc |L ∈ C} .

■ For any f we have DTIME(f) = coDTIME(f) and
DSPACE(f) = coDSPACE(f).

■ coP = P. coPSPACE = PSPACE. coL = L.

■ NP and coNP are thought to be different.

◆ P = NP would imply NP = coNP. Opposite implication is not
known.

Functions computable by NTMs

21 / 34

An NTM M computes the function f : {0, 1}∗ → {0, 1}∗, if on input x

■ each computation path of M ends by

◆ M outputting f(x), or

◆ M giving up (outputting “don’t know”)

■ at least one computation path of M ends by outputting f(x).

Number of reachable vertices

22 / 34

Given graph G with n vertices and a vertex s. How many vertices can be
reached from s?
Theorem (Immerman-Szelepscényi). This can be computed by a
NTM in space O(log n).
Let S(k) be the set of vertices reachable from s in at most k steps.
The following algorithm can be used to compute S(n− 1).

Proof of Immerman-Szelepscényi theorem

23 / 34

|S(0)| := 1
for k := 1 to n− 1 do

compute |S(k)| from |S(k − 1)|

Proof of Immerman-Szelepscényi theorem

24 / 34

|S(0)| := 1
for k := 1 to n− 1 do

|S(k)| := 0
for u ∈ V (G) do

b := (u
?
∈ S(k))

if b then |S(k)| := |S(k)|+ 1

Proof of Immerman-Szelepscényi theorem

25 / 34

|S(0)| := 1
for k := 1 to n− 1 do

|S(k)| := 0
for u ∈ V (G) do

m := 0 b := false
for v ∈ V (G) do

b′ := (v
?
∈ S(k − 1)) -- nondeterministic procedure

if b′ then
m := m+ 1
if (v, u) ∈ E(G) then b := true

if m < |S(k − 1)| then give up
if b then |S(k)| := |S(k)|+ 1

Proof of Immerman-Szelepscényi theorem

26 / 34

|S(0)| := 1
for k := 1 to n− 1 do

|S(k)| := 0
for u ∈ V (G) do

m := 0 b := false
for v ∈ V (G) do

w0 := s b′ := true
for p := 1 to k − 1 do

choose wp ∈ V (G)
b′ := b′ ∧ (wp−1, wp) ∈ E(G)

if b′ ∧ (wk−1 = v) then
m := m+ 1
if (v, u) ∈ E(G) then b := true

if m < |S(k − 1)| then give up
if b then |S(k)| := |S(k)|+ 1

NSPACE(f) and coNSPACE(f)

27 / 34

Theorem. If f is a space-computable function, and f ∈ Ω(λn. log n),
then NSPACE(f) = coNSPACE(f).
Proof sketch.

■ Let NTM M working in space f decide L ⊆ {0, 1}∗. We need
machine M ′ that decides Lc.

■ The computation graph of a NTM M working in space f has at
most cf(n) vertices for some c.

■ M ′ uses previous algorithm to compute |S(cf(n))|. This takes
c′ · f(n) space.

■ It checks all configurations of M for being included in S(cf(n)).

◆ If accepting configuration found, then M ′ rejects.

◆ If algorithm gives up, then M ′ rejects.

◆ If no accepting configuration found, M ′ accepts.

P-completeness

28 / 34

Defined through ≤L
m-reduction.

CIRCUITVALUE = {〈C, b1, . . . , bk〉 |

Boolean circuit C evaluates to true on inputs b1, . . . , bk}

Theorem. CIRCUITVALUE is P-complete.

Oracle Turing Machines

29 / 34

■ An Oracle TM (det. or non-det.) M is a TM with

◆ A designated tape — the query tape

◆ Three designated states qquery, qyes, qno.

■ An oracle O is a subset of {0, 1}∗.

■ Whenever M running together with O (denoted MO) goes into
state qquery,

◆ the contents of query tape is interpreted as a bit-string x;

◆ M goes to state qyes if x ∈ O. Otherwise M goes to state qno.

◆ This takes a single step.

An oracle O gives us relativized complexity classes PO, NPO, etc.

Limits of diagonalization

30 / 34

■ The diagonalization proofs used the facts that

◆ there is an efficient mapping between bit-strings and TMs

◆ efficient universal TMs exist.

■ The proofs did not really consider the internal workings of the TMs
Mi from the enumeration of all TMs.

■ All these proofs would go through also for oracle TMs.

■ Can a similar proof decide P
?
= NP.

Theorem. There exist A,B ⊆ {0, 1}∗, such that PA = NPA and
PB 6= NPB.

The language EXPCOM

31 / 34

Consider the language

EXPCOM = {〈M,x, 1n〉 |DTM M accepts x in ≤ 2n steps} .

This is a complete language for exponential-time computation.

A computation in NPEXPCOM on input of length n would

■ non-deterministically choose a certificate of length ≤ p(n);

■ (make up to p(n) steps), solve up to p(n) problems, each requiring
up to 2p(n) steps.

A deterministic algorithm would need at most
2p(n) · p(n) · 2p(n) = 2(p(n))

2 log p(n) steps. Fits in EXPCOM.

Thus P EXPCOM = NPEXPCOM.

The oracle B

32 / 34

For any B ⊆ {0, 1}∗ let

UB = {1n | ∃x : |x| = n ∧ x ∈ B} .

For any B we have UB ∈ NPB. Exercise. Why?

We’ll now construct a language B, such that UB 6∈ PB.

The oracle B

33 / 34

Let M1,M2, . . . be the enumeration of oracle DTM-s.
We will now define partial functions ϕ0, ϕ1, . . . from {0, 1}∗ to {yes, no},
such that

■ ϕ0 is always undefined.

■ Each ϕi is defined only on a finite subset of {0, 1}∗.

■ If ϕi(x) is defined, then ϕi+1(x) = ϕi(x).

■ For each x ∈ {0, 1}∗ there exists i, such that ϕi(x) is defined.

In the end we define

B = {x ∈ {0, 1}∗ | ∃i : ϕi(x) = yes} .

Let t be a superpolynomial function, such that ∀n : t(n) < 2n

Constructing ϕi+1

34 / 34

■ Set ϕi+1 = ϕi.

■ Let n = (maxϕi(x) is defined |x|) + 1.

■ Run M
(·)
i+1(1

n) for t(n) steps. If Mi queries for x, then

◆ If ϕi(x) is defined, then answer ϕi(x).

◆ If ϕi(x) is not defined, then answer no.

■ Set ϕi+1 = ϕi+1[x 7→ no].

■ If M
(·)
i+1 stops in t(n) steps, then

◆ If M
(·)
i+1 accepts, then set ϕi+1 = ϕi+1[{0, 1}

n 7→ no]

◆ If M
(·)
i+1 rejects then pick x ∈ {0, 1}n that M

(·)
i+1 did not query,

set ϕi+1 = ϕi+1[x 7→ yes].

	Space complexity classes
	Examples
	Computing a function and usage of space
	Inclusions and separations
	PSPACE-completeness
	Quantified Boolean formulas
	Evaluating QBF-s
	TQBF is PSPACE-complete
	Reachability
	Encoding TM M
	TQBF and NPSPACE
	PATH in deterministic space
	PSPACE and game-playing
	log-space reductions
	NL-completeness
	Log-space reduction to PATH
	DSPACE(0)
	Least amount of usable memory
	Complexity classes of complementary languages
	Functions computable by NTMs
	Number of reachable vertices
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	NSPACE(f) and coNSPACE(f)
	¶-completeness
	Oracle Turing Machines
	Limits of diagonalization
	The language EXPCOM
	The oracle B
	The oracle B
	Constructing i+1

