Space complexity

Space complexity classes

A language L C {0, 1}* belongs to the class DSPACE(f), if

m there exists a DTM M that accepts L, and a constant c,

m such that M(z) writes to at most ¢ - f(|z|) cells on its work tapes.

The class NSPACE(f) is defined similarly for nondeterministic TMs.

PSPACE = |] DSPACE(An.n°) L = DSPACE(\n. logn)

ceN

NPSPACE = | J NSPACE(An.n®) NL = NSPACE(An.logn)

ceN

2 /34

Examples

m SAT € DSPACE(An.n)
m PATH = {(G, s,t) | G is dir. graph with path from s to ¢t} € NL.

3/34

Computing a function and usage of space

m f:{0,1}* — {0,1}*. How to define that it is computable in space
g’

m Output is also written on a work tape, how to (dis)count it?
Two possibilities:

m [he machine has an extra output tape. It is write-only and the
head can only move to the right.

m Languages L; and L, must be in DSPACE(g) for all ¢, where

0 Li = {x||f(z)] = 1}
0 L =A{x|xz € L; Ni-th bit of f(x) is 1}

Exercise. If g € Q(An.logn) then the two variants are the same.

4/ 34

Inclusions and separations

Theorem.
DTIME(f) € DSPACE(f) € NSPACE(f) C UceN DTIME()\n.cf(”))

Exercise. What is the space complexity of simulating a TM?
Theorem. If f € o(g) then DSPACE(f) € DSPACE(qg).

Corollary. L C NL C P C NP C PSPACE
We believe all inclusions are strict, but we know only L & PSPACE.

5 / 34

PSPACE-completeness

A language L is PSPACE-hard if for any L' € PSPACE we have

L' <P L. Language L is PSPACE-complete if it is PSPACE-hard and
belongs to PSPACE.

Theorem. The language

{{(M,x,1") [DTM M accepts x in space n}

iIs PSPACE-complete.

6 /34

Quantified Boolean formulas

A quantified Boolean formula is one of

¢ =z FV(¢) = {x}

¢ = ¢’ FV(¢) = FV(¢)

¢ = ¢10p P2 FV(¢) = FV(¢1) U FV(¢2)
¢ = Q¢ FV(¢) = FV(¢')\{z}

where () is either V or 4.

7/ 34

Evaluating QBF-s

¢ defines a Boolean function [¢] from F'V(¢) — B to B.

[«](V) = V(=)
[~l(V) = = ([o](V))
[61 0D $2[(V') = [9:](V) [0
[Vz o] (V) = [o)(V
[Bz o) (V) = [2l(V

Let TQBF = {z is QBF | F'V(z) = 0, [x]() = true}

All quantifiers can be moved to the front of the formula without

increasing the length.

P]] [Wz]] (V)

[z — true]) A [o](V |x — false])
|

x +— true]) V [¢](V |z — false])

8 /34

TQBF is PSPACE-complete

Theorem. TQBF is PSPACE-complete.
Lemma. TQBF € PSPACE.

Lemma. TQBF is PSPACE-hard.
We reduce {(M,z,1") | DTM M accepts x in space n} to TQBF

m Recall succinct representations of computation graphs:

0 A configuration encoded in m bits, where m < p(n).
0 Formula S(uq,...,un,), expressing “being a conf.”
0 Formula R(uq, ..., Up,uy,...,u) expressing C' — C".

[0 Formulas ®°, ®* expressing sets of initial and final
configurations.

0 Size of everything bounded by p(n).

9 /34

Reachability

We want to write the formula R;(uy, ..., Upy, U], .., u.) expressing
C 5 C" in at most 2 steps.

RO(uh"'aumau/la"'?u;n) —

R(uy, ..., Up,uy, ...t YV (U = Uy A Ay, = 1,)

/ / ! /A /! /!
Ri(U1, .oy Uy Uy - ooty) = Juy, .oy, 2 S(uy, ... ul)A

/! /! /! /! / /
Ri y(up, ..oy, uyy ooy)N Ry (U, ooy Uy, Uy

Now |R;| = O(2") - |R|. This is bad.

/ / /! /A /! /!
Ri(uy, ..o U, Uy, st) = 3wy, . ooyu, 2 S(uy, ..o w JA

m m
VU1, .oy Uy Uy, UL ((/\k 1Uk:uk/\/\k 1@,'€zu’,;>\/

m m
/! / / / /
(/\ Vi, = U N\ /\k—l UV = uk)) = R; 1(v1,...,0m, 0], ..., 0,)

k=1

10 / 34

Encoding TM M

Given M, =, 1™, we
m Construct m, S, R, ®°, ¢°.
m Let ' be such, that M has < 2" configurations of size n.

m QOutput

/ ! . o
U, o Uy Uy e Uy s PO(U, o U) A

O (uy, ... u) A Ry(ug, ..o U,y ooy)

11 / 34

TQBF and NPSPACE

Theorem. TQBF is NPSPACE-complete.
Exercise. Prove it.
Corollary PSPACE = NPSPACE.

12 / 34

PATH in deterministic space

Theorem (Savitch). PATH € DSPACE(A\n.log” n).

Proof. Define the function REACH(u, v,7): There is a path from u to v
of length at most 2°.

REACH(u,v,4) = 3w : REACH(u,w, i — 1) A REACH(w, v,i — 1),

Each invocation of REACH needs to store a constant number of vertices.
The third argument is initially [logn].

Corollary. NSPACE(f) C DSPACE(An.f(n)?) for any
space-constructible function f € Q(An.logn).

13 / 34

PSPACE and game-playing

m Imagine a two-player game with perfect information

[0 A set of possible states, a starting state, possible ending states
with indication who won and lost.

[0 For each state: possible legal moves for both players.

[0 Both players always know the state the game is in.

m When does the first player have a winning strategy?

dmy move Vopp.'s move dmy move ... | win!

Similar to TQBF.

14 / 34

log-space reductions

Definition. Language L is log-space reducible to language L’ (denote
L<LL)if

m there exists a function f : {0,1}* — {0, 1}*, such that
O f(x) is computable in space O(log |z|)
0 x e Liff f(x) e L.

Theorem. <! is transitive. If L <" [/ and I’ € L then L € L.
Exercise. Prove it.

15 / 34

NL-completeness

A language L is NL-hard if for any L' € NL we have L' <! L. Language
L is NL-complete if it is NL-hard and belongs to NL.

Theorem. PATH is NL-complete.
We already know PATH € NL. Hence only hardness must be shown.

16 / 34

Log-space reduction to PATH

m Let M be a NTM working in space O(logn).
m We can compute its adjacency matrix in space O(logn).

m le. given NTM M and two configurations C, C" of size O(logn),
we have to decide in space O(logn) whether C' — C".

17 / 34

DSPACE(0)

two-way finite automata

Same power as (one-way) finite automata.

18 / 34

Least amount of usable memory

Theorem. If s € o(An.loglogn) then DSPACE(s) = DSPACE(0).
Proof on blackboard. ..

L = {#bit(1)#bit(2)# - - - bit(n)# |n € N}
Exercise. Show that L € DSPACE(An. loglogn)\DSPACE(0).

19 / 34

Complexity classes of complementary
languages

Let C be a complexity class. The class coC is
coC={L°|LeC} .
m For any f we have DTIME(f) = coDTIME(f) and
DSPACE(f) = coDSPACE(f).
m coP =P. coPSPACE = PSPACE. colL = L.
m NP and coNP are thought to be different.

[0 P = NP would imply NP = coNP. Opposite implication is not
known.

20 / 34

Functions computable by NTMs

An NTM M computes the function f: {0,1}* — {0,1}*, if on input x
m each computation path of M ends by

0 M outputting f(z), or
0 M giving up (outputting “don’t know")

m at least one computation path of M ends by outputting f(x).

21 / 34

Number of reachable vertices

Given graph G with n vertices and a vertex s. How many vertices can be
reached from s?

Theorem (Immerman-Szelepscényi). This can be computed by a
NTM in space O(logn).

Let S(k) be the set of vertices reachable from s in at most & steps.
The following algorithm can be used to compute S(n — 1).

22 / 34

Proof of Immerman-Szelepscényi theorem

[5(0)] =1
for k:=1ton—1do
compute |S(k)| from |S(k — 1)

23 / 34

Proof of Immerman-Szelepscényi theorem

15(0)] =1
for k:=1ton—1do
|S(K)] =0

for u € V(G) do

b= (u € S(k))
if b then |S(k)| :=|S(k)|+1

24 / 34

Proof of Immerman-Szelepscényi theorem

15(0)] =1
for k:=1ton—1do
|S(K)] =0

for u € V(G) do
m:=0 b:=false
for v € V(G) do

b= (v c S(k —1)) -- nondeterministic procedure
if ' then
m:=m+1
if (v,u) € E(G) then b := true
if m < |S(k—1)| then give up
if b then |S(k)| :=|S5(k)| +1

25 / 34

Proof of Immerman-Szelepscényi theorem

15(0)] =1
for k:=1ton—1do
|S(K)] =0

for u € V(G) do
m:=0 b:=false
for v € V(G) do
wop:=s b :=true
forp.=1tok—1do
choose w, € V(G)
vV :=b N (wy,_1,w,) € E(G)
if O’ A (wr_1 =v) then
m:=m + 1
if (v,u) € E(G) then b := true
if m < |S(k—1)| then give up
if b then |S(k)| :=|S(k)|+1

26 / 34

NSPACE(f) and coNSPACE(f)

Theorem. If f is a space-computable function, and f € Q(An.logn),

then NSPACE(f) = coNSPACE(f).
Proof sketch.

m Let NTM M working in space f decide L C {0,1}*. We need
machine M’ that decides LF.

m [he computation graph of a NTM M working in space f has at
most ¢/ vertices for some c.

m M’ uses previous algorithm to compute |S(c/™)|. This takes
c - f(n) space.

m It checks all configurations of M for being included in S(c/(™).
O If accepting configuration found, then M’ rejects.

O If algorithm gives up, then M’ rejects.
O If no accepting configuration found, M’ accepts.

27 / 34

P-completeness

Defined through <! _reduction.

CIRCUITVALUE = {(C, by, ..., by]|

Boolean circuit C' evaluates to true on inputs by, ..., b}

Theorem. CIRCUITVALUE is P-complete.

28 / 34

Oracle Turing Machines

m An Oracle TM (det. or non-det.) M is a TM with
[0 A designated tape — the query tape
O Three designated states qquery, Gyes: Gno-

m An oracle O is a subset of {0, 1}*.

m Whenever M running together with O (denoted M?) goes into
state gquery

[0 the contents of query tape is interpreted as a bit-string x;
0 M goes to state ques If z € O. Otherwise M goes to state gp,.
[0 This takes a single step.

An oracle O gives us relativized complexity classes P°, NP, etc.

29 / 34

Limits of diagonalization

m The diagonalization proofs used the facts that
[0 there is an efficient mapping between bit-strings and TMs

[1 efficient universal TMs exist.

m The proofs did not really consider the internal workings of the TMs
M; from the enumeration of all TMs.

m All these proofs would go through also for oracle TMs.

m Can a similar proof decide P ~ NP.

Theorem. There exist A, B C {0, 1}*, such that P4 = NP and
PP £ NP”.

30 / 34

The language EXPCOM

Consider the language
EXPCOM = {(M,z,1") |DTM M accepts = in < 2" steps} .
This is a complete language for exponential-time computation.
A computation in NPE*PM on input of length n would
m non-deterministically choose a certificate of length < p(n);

m (make up to p(n) steps), solve up to p(n) problems, each requiring
up to 2P(" steps.

A deterministic algorithm would need at most
20(n) . p(p) - 20(n) = 2@(n))*logp(n) steps. Fits in EXPCOM.

Thus PEXPCOM _ \pEXPCOM

31/ 34

The oracle B

For any B C {0,1}* let
Ug={1"|3z: |x|=nAx € B} .
For any B we have Ug € NP”. Exercise. Why?

We'll now construct a language B, such that Ug & PP5.

32 /34

The oracle B

Let My, Ms, ... be the enumeration of oracle DTM-s.
We will now define partial functions g, @1, ... from {0,1}* to {yes, no},
such that

m (g is always undefined.

m Each o; is defined only on a finite subset of {0, 1}".

m If p;(x) is defined, then v, 1(x) = p;(x).

m For each x € {0, 1}* there exists 4, such that ¢;(x) is defined.

In the end we define
B={x e {0,1}"|3i: p;(x) = yes} .

Let ¢ be a superpolynomial function, such that Vn : t(n) < 2"

33 /34

Constructing ¢,

Set wiy1 = ;.
Let n = (max%(x) is defined ‘CED —+ 1.
Run Mz'(—'i—)l(ln) for t(n) steps. If M; queries for x, then

O If ;(x) is defined, then answer o;(x).
O If ¢;(x) is not defined, then answer no.

» Set ;11 = Yir1|T — nol.

If M< , stops in t(n) steps, then

O If M(+1 accepts, then set ;.1 = ©;11[{0,1}" — no]

O If M(/; rejects then pick z € {0,1}" that]\4Z(+)1 did not query,
set Pi+1 = %—H[m — yes]

34 /34

	Space complexity classes
	Examples
	Computing a function and usage of space
	Inclusions and separations
	PSPACE-completeness
	Quantified Boolean formulas
	Evaluating QBF-s
	TQBF is PSPACE-complete
	Reachability
	Encoding TM M
	TQBF and NPSPACE
	PATH in deterministic space
	PSPACE and game-playing
	log-space reductions
	NL-completeness
	Log-space reduction to PATH
	DSPACE(0)
	Least amount of usable memory
	Complexity classes of complementary languages
	Functions computable by NTMs
	Number of reachable vertices
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	Proof of Immerman-Szelepscényi theorem
	NSPACE(f) and coNSPACE(f)
	¶-completeness
	Oracle Turing Machines
	Limits of diagonalization
	The language EXPCOM
	The oracle B
	The oracle B
	Constructing i+1

