Time hierarchy. Diagonalization arguments.

Reminder. Encoding TM-s as bit-strings

- A *k*-tape DTM or NTM $(\Gamma, Q, \delta, q_0, Q_F)$ can be encoded as a bit-string α . One has to mention
 - the number of tapes k; the sizes of Γ and Q;
 - \blacklozenge the element q_0 , elements of Q_F ;
 - the points of δ .

• Let the encoding $M \leftrightarrow \alpha$ satisfy the following:

- each $\alpha \in \{0,1\}^*$ encodes some TM;
- \blacklozenge each TM M is encoded by an infinite number of bit-strings.
- Let M_{α} be the TM encoded by α .

Warmup. The halting problem

Consider the language

 $HALT = \{ \langle \alpha, x \rangle \, | \, M_{\alpha} \text{ stops on input } x \}$.

Theorem. HALT is not accepted by any TM.

- Proof by contradiction. Assume M_{HALT} accepts HALT.
- Let M'(x) first invoke $M_{\text{HALT}}(\langle x, x \rangle)$.
 - If M_{HALT} accepts, then M' diverges.
 - If M_{HALT} rejects, then M' returns 1.
- \blacksquare Let β be an encoding of M'.
- What does $M'(\beta)$ do?

(Deterministic) time hierarchy theorem

■ Let f and g be two time-constructible functions, such that f(n) > n and $\lambda n.f(n) \log f(n) \in o(g)$.

Theorem. $\mathsf{DTIME}(f) \subsetneq \mathsf{DTIME}(g).$

■ Remark. The logarithmic factor comes from the universal TM.

Proof. Let h be a function computable in time O(g), such that

$$\blacksquare \ h \in \omega(f);$$

 $\square \ \lambda n.h(n) \log h(n) \in O(g).$

(you can pick $h(n) = \lfloor g(n) / \log g(n) \rfloor$)

Proof

Define the language D as follows:

 $D = \{ \alpha \in \{0,1\}^* \, | \, M_\alpha \text{ accepts } \alpha \text{ in } \leq h(|\alpha|) \text{ steps} \}^c \ .$

We show that $D \not\in \mathsf{DTIME}(f)$.

- Let $L \in \mathsf{DTIME}(f)$. Let M accept L in time $c \cdot f$ for some constant c.
- Let $M = M_{\alpha}$ for some $\alpha \in \{0, 1\}^*$, where $h(|\alpha|)/f(|\alpha|) > c$.
- We get $\alpha \in L$ iff $\alpha \notin D$. Hence $D \neq L$.

At the same time, $D \in \mathsf{DTIME}(g)$. A universal machine working in time $\lambda n.h(n) \log h(n)$ can accept D.

Non-deterministic time hierarchy theorem

■ Let f and g be two time-constructible functions, such that f(n) > n and $\lambda n.f(n+1) \in o(g)$.

- **Theorem.** $NTIME(f) \subsetneq NTIME(g)$.
- Note: no logarithmic factor!
- Exercise. Show that a *k*-tape NTM can be simulated in linear time on a 3-tape NTM.

Proof. Let h and h' be functions computable in time O(g), such that $\blacksquare \lambda n.f(n+1) \in o(h')$

•
$$h' \in o(h)$$
 (E.g. take $h = \sqrt{fg}$ and $h' = \sqrt{fh}$)

 $\blacksquare h \in o(g).$

Proof

Define a function φ as follows

$$\varphi(1) = 2$$
$$\varphi(i+1) = 2^{h(\varphi(i))}$$

For each n, let $\tilde{\varphi}(n) = \max\{i \mid \varphi(i) \le n\}$. Define

$$D = \begin{cases} 1^n \middle| \begin{array}{l} i := \tilde{\varphi}(n) - 1 \\ n \neq \varphi(i+1) \wedge M_i \text{ accepts } 1^{n+1} \text{ in time } h'(n) \\ \text{OR} \\ n = \varphi(i+1) \wedge M_i \text{ rejects } 1^{\varphi(i)+1} \text{ in time } g(\varphi(i)+1) \end{cases} \end{cases}$$

We must show $D \notin \mathsf{NTIME}(f)$ and $D \in \mathsf{NTIME}(g)$.

$D \in \mathsf{NTIME}(g)$

$$D = \begin{cases} 1^n \middle| \begin{array}{l} i := \tilde{\varphi}(n) - 1 \\ n \neq \varphi(i+1) \wedge M_i \text{ accepts } 1^{n+1} \text{ in time } h'(n) \\ \text{OR} \\ n = \varphi(i+1) \wedge M_i \text{ rejects } 1^{\varphi(i)+1} \text{ in time } g(\varphi(i)+1) \end{cases} \end{cases}$$

- To compute $\tilde{\varphi}(n)$, compute $\varphi(1), \varphi(2), \ldots$ until $\geq n$.
- If $n \neq \varphi(i+1)$ then nondeterministically simulate M_i .
- If $n = \varphi(i+1)$, then search through all $O(2^{g(\varphi(i)+1)})$ computation paths of M_i .

$D\not\in \mathsf{NTIME}(f)$

Let $L \in \mathsf{NTIME}(f)$. Let L be accepted by M_i for some i. Assume L = D.

■ We have

$$\begin{split} & 1^{\varphi(i)+1} \in L \Leftrightarrow 1^{\varphi(i)+1} \in D \Leftrightarrow 1^{\varphi(i)+2} \in L \\ & 1^{\varphi(i)+2} \in L \Leftrightarrow 1^{\varphi(i)+2} \in D \Leftrightarrow 1^{\varphi(i)+3} \in L \end{split}$$

 $1^{\varphi(i+1)} \in L \Leftrightarrow 1^{\varphi(i+1)} \in D \Leftrightarrow 1^{\varphi(i)+1} \not\in L$

P ... ??? ... NP-completeness

Theorem (Ladner). If $P \neq NP$ then there exists a language $A \in NP \setminus P$ that is not NP-complete.

Proof. We will construct such an A. Let

 \blacksquare M_1, M_2, \ldots be all polynomial-time DTMs.

• Let L_i be the language accepted by M_i .

 \blacksquare f_1, f_2, \ldots be all polynomial-time computable functions.

- M_i works in, f_i is computable in time $O(n^i)$.
- From *i*, it is easy to find M_i , f_i .

• Let B_0, B_1, \ldots be the enumeration of all bit-strings

These M_1, M_2, \ldots and f_1, f_2, \ldots are given. We will now construct A, such that...

Proof

 $\blacksquare \ \mathsf{Claim} \ \mathfrak{R}_i: \ A \neq L_i$

- Claim S_i : there is an $x \in \{0, 1\}^*$, such that $x \in SAT XOR$ $f_i(x) \in A$.
 - \blacklozenge i.e. f_i does not polynomially many-one reduce SAT to A.

$\blacksquare Claim: A \in \mathsf{NP}$

We set

 $A = \{x \in \{0,1\}^* \, | \, x \in \mathsf{SAT} \text{ and } g(|x|) \text{ is even} \}$

for a function $g : \mathbb{N} \to \mathbb{N}$ that we define below. If g(n) is computable in time O(p(n)), then $A \in \mathbb{NP}$.

For sets X and Y define $X \bigtriangleup Y = (X \backslash Y) \cup (Y \backslash X)$.

Computing g(n)

g(0) = g(1) = 2. If $n \ge 2$ then g(n) is computed as follows.

Ist stage Compute $g(0), g(1), g(2), \ldots$

• Stop after n time units.

• Let u be the largest value, such that g(u) was computed. Let k = g(u).

■ 2nd stage Let $i = \lfloor \frac{k}{2} \rfloor$. For j = 0, 1, 2, ..., check whether $B_j \in L_i \text{ XOR } B_j \in A \mid B_j \in \text{SAT XOR } f_i(B_j) \in A$ (k is even) (k is odd)

• Stop after n time units.

• If found such B_j then **return** k + 1. Else **return** k.

Claim: $A \notin P$

- Otherwise: $\exists i : A = L_i$. Consider smallest such *i*.
- Then g(n) never grows past 2i.
- If g(n) = 2i almost always, then $A \triangle SAT$ is finite. Hence $SAT \in P$.
- g(n) = 2i' almost always, where i' < i is impossible by minimality of *i*.
- g(n) = 2i' + 1 almost always would mean that $f_{i'}$ reduces SAT to *A*. I.e. SAT \in P.

Claim: SAT is not reducible to A

- Otherwise: $\exists i : f_i(SAT) = A$. Consider smallest such *i*.
- Then g(n) never grows past 2i + 1.
- If g(n) = 2i + 1 almost always, then A is finite. Hence $A \in P$ and also SAT $\in P$.
- g(n) = 2i' + 1 almost always, where i' < i is impossible by minimality of i.
- g(n) = 2i' almost always would mean $A = L_{i'}$. Hence $A \in P$ and also SAT $\in P$.

NP-intermediate problems

Problems conjectured to be NP-intermediate are

- graph isomorphism
- factoring
 - Given n and an interval [k, l]. Does n have a factor in that interval?

Oracle Turing Machines

An Oracle TM (det. or non-det.) M is a TM with

- ◆ A designated tape the query tape
- Three designated states q_{query} , q_{yes} , q_{no} .
- An oracle \mathcal{O} is a subset of $\{0,1\}^*$.
- Whenever M running together with O (denoted M^O) goes into state q_{query},
 - \blacklozenge the contents of query tape is interpreted as a bit-string x;
 - M goes to state q_{yes} if $x \in \mathcal{O}$. Otherwise M goes to state q_{no} .
 - ◆ This takes a single step.

An oracle O gives us relativized complexity classes P^O, NP^O, etc.

Limits of diagonalization

The diagonalization proofs used the facts that

- ◆ there is an efficient mapping between bit-strings and TMs
- ◆ efficient universal TMs exist.
- The proofs did not really consider the internal workings of the TMs M_i from the enumeration of all TMs.
- All these proofs would go through also for oracle TMs.
- Can a similar proof decide $P \stackrel{?}{=} NP$.

Theorem. There exist $A, B \subseteq \{0, 1\}^*$, such that $P^A = NP^A$ and $P^B \neq NP^B$.

The language EXPCOM

Consider the language

 $\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \, | \, \mathsf{DTM} \ M \text{ accepts } x \text{ in } \leq 2^n \text{ steps} \}$.

This is a complete language for exponential-time computation.

- A computation in NP^{EXPCOM} on input of length n would
 - non-deterministically choose a certificate of length $\leq p(n)$;
 - (make up to p(n) steps), solve up to p(n) problems, each requiring up to 2^{p(n)} steps.

A deterministic algorithm would need at most $2^{p(n)} \cdot p(n) \cdot 2^{p(n)} = 2^{(p(n))^2 \log p(n)}$ steps. Fits in EXPCOM.

Thus $P^{\text{EXPCOM}} = \text{NP}^{\text{EXPCOM}}$.

The oracle B

For any $B \subseteq \{0,1\}^*$ let

$$U_B = \{1^n \,|\, \exists x : |x| = n \land x \in B\} \;.$$

For any B we have $U_B \in NP^B$. Exercise. Why?

We'll now construct a language B, such that $U_B \notin \mathsf{P}^B$.

The oracle B

Let M_1, M_2, \ldots be the enumeration of oracle DTM-s. We will now define partial functions $\varphi_0, \varphi_1, \ldots$ from $\{0, 1\}^*$ to $\{\text{yes}, \text{no}\}$, such that

 $\blacksquare \varphi_0$ is always undefined.

Each φ_i is defined only on a finite subset of $\{0,1\}^*$.

If $\varphi_i(x)$ is defined, then $\varphi_{i+1}(x) = \varphi_i(x)$.

For each $x \in \{0,1\}^*$ there exists *i*, such that $\varphi_i(x)$ is defined.

In the end we define

$$B = \{ x \in \{0, 1\}^* \, | \, \exists i : \varphi_i(x) = \mathsf{yes} \} .$$

Let t be a superpolynomial function, such that $\forall n : t(n) < 2^n$

Constructing φ_{i+1}

 $\blacksquare \text{ Set } \varphi_{i+1} = \varphi_i.$

• Let $n = (\max_{\varphi_i(x) \text{ is defined }} |x|) + 1$.

■ Run $M_{i+1}^{(\cdot)}(1^n)$ for t(n) steps. If M_i queries for x, then

• If $\varphi_i(x)$ is defined, then answer $\varphi_i(x)$.

• If $\varphi_i(x)$ is not defined, then answer no.

• Set $\varphi_{i+1} = \varphi_{i+1}[x \mapsto \mathsf{no}].$

If $M_{i+1}^{(\cdot)}$ stops in t(n) steps, then

• If $M_{i+1}^{(\cdot)}$ accepts, then set $\varphi_{i+1} = \varphi_{i+1}[\{0,1\}^n \mapsto \mathsf{no}]$

• If $M_{i+1}^{(\cdot)}$ rejects then pick $x \in \{0, 1\}^n$ that $M_{i+1}^{(\cdot)}$ did not query, set $\varphi_{i+1} = \varphi_{i+1}[x \mapsto \text{yes}]$.