
Time hierarchy.
Diagonalization arguments.

Reminder. Encoding TM-s as bit-strings

2 / 21

■ A k-tape DTM or NTM (Γ, Q, δ, q0, QF) can be encoded as a
bit-string α. One has to mention

◆ the number of tapes k; the sizes of Γ and Q;

◆ the element q0, elements of QF ;

◆ the points of δ.

■ Let the encoding M ↔ α satisfy the following:

◆ each α ∈ {0, 1}∗ encodes some TM;

◆ each TM M is encoded by an infinite number of bit-strings.

■ Let Mα be the TM encoded by α.

Warmup. The halting problem

3 / 21

Consider the language

HALT = {〈α, x〉 |Mα stops on input x} .

Theorem. HALT is not accepted by any TM.

■ Proof by contradiction. Assume MHALT accepts HALT.

■ Let M ′(x) first invoke MHALT(〈x, x〉).

◆ If MHALT accepts, then M ′ diverges.

◆ If MHALT rejects, then M ′ returns 1.

■ Let β be an encoding of M ′.

■ What does M ′(β) do?

(Deterministic) time hierarchy theorem

4 / 21

■ Let f and g be two time-constructible functions, such that
f(n) > n and λn.f(n) log f(n) ∈ o(g).

■ Theorem. DTIME(f) (DTIME(g).

■ Remark. The logarithmic factor comes from the universal TM.

Proof. Let h be a function computable in time O(g), such that

■ h ∈ ω(f);

■ λn.h(n) log h(n) ∈ O(g).

(you can pick h(n) = ⌊g(n)/ log g(n)⌋)

Proof

5 / 21

Define the language D as follows:

D = {α ∈ {0, 1}∗ |Mα accepts α in ≤ h(|α|) steps}c .

We show that D 6∈ DTIME(f).

■ Let L ∈ DTIME(f). Let M accept L in time c · f for some
constant c.

■ Let M = Mα for some α ∈ {0, 1}∗, where h(|α|)/f(|α|) > c.

■ We get α ∈ L iff α 6∈ D. Hence D 6= L.

At the same time, D ∈ DTIME(g). A universal machine working in time
λn.h(n) log h(n) can accept D.

Non-deterministic time hierarchy theorem

6 / 21

■ Let f and g be two time-constructible functions, such that
f(n) > n and λn.f(n + 1) ∈ o(g).

■ Theorem. NTIME(f) (NTIME(g).

■ Note: no logarithmic factor!

■ Exercise. Show that a k-tape NTM can be simulated in linear time
on a 3-tape NTM.

Proof. Let h and h′ be functions computable in time O(g), such that

■ λn.f(n + 1) ∈ o(h′)

■ h′ ∈ o(h)

■ h ∈ o(g).

(E.g. take h =
√
fg and h′ =

√
fh)

Proof

7 / 21

Define a function ϕ as follows

ϕ(1) = 2

ϕ(i+ 1) = 2h(ϕ(i))

For each n, let ϕ̃(n) = max{i |ϕ(i) ≤ n}. Define

D =















1n

i := ϕ̃(n)− 1
n 6= ϕ(i+ 1) ∧Mi accepts 1

n+1 in time h′(n)
OR
n = ϕ(i+ 1) ∧Mi rejects 1

ϕ(i)+1 in time g(ϕ(i) + 1)















We must show D 6∈ NTIME(f) and D ∈ NTIME(g).

D ∈ NTIME(g)

8 / 21

D =















1n

i := ϕ̃(n)− 1
n 6= ϕ(i+ 1) ∧Mi accepts 1

n+1 in time h′(n)
OR
n = ϕ(i+ 1) ∧Mi rejects 1

ϕ(i)+1 in time g(ϕ(i) + 1)















■ To compute ϕ̃(n), compute ϕ(1), ϕ(2), . . . until ≥ n.

■ If n 6= ϕ(i+ 1) then nondeterministically simulate Mi.

■ If n = ϕ(i+ 1), then search through all O(2g(ϕ(i)+1)) computation
paths of Mi.

◆ There is sufficient time for that, because n is exponentially
larger than ϕ(i).

D 6∈ NTIME(f)

9 / 21

■ Let L ∈ NTIME(f). Let L be accepted by Mi for some i. Assume
L = D.

■ We have

1ϕ(i)+1 ∈ L ⇔ 1ϕ(i)+1 ∈ D ⇔ 1ϕ(i)+2 ∈ L
1ϕ(i)+2 ∈ L ⇔ 1ϕ(i)+2 ∈ D ⇔ 1ϕ(i)+3 ∈ L

.
1ϕ(i+1) ∈ L ⇔ 1ϕ(i+1) ∈ D ⇔ 1ϕ(i)+1 6∈ L

P . . . ??? . . . NP-completeness

10 / 21

Theorem (Ladner). If P 6= NP then there exists a language A ∈ NP\P
that is not NP-complete.
Proof. We will construct such an A. Let

■ M1,M2, . . . be all polynomial-time DTMs.

◆ Let Li be the language accepted by Mi.

■ f1, f2, . . . be all polynomial-time computable functions.

◆ Mi works in, fi is computable in time O(ni).

◆ From i, it is easy to find Mi, fi.

■ Let B0, B1, . . . be the enumeration of all bit-strings

These M1,M2, . . . and f1, f2, . . . are given. We will now construct A,
such that. . .

Proof

11 / 21

■ Claim Ri: A 6= Li

■ Claim Si: there is an x ∈ {0, 1}∗, such that x ∈ SAT XOR
fi(x) ∈ A.

◆ i.e. fi does not polynomially many-one reduce SAT to A.

■ Claim: A ∈ NP

We set
A = {x ∈ {0, 1}∗ |x ∈ SAT and g(|x|) is even}

for a function g : N → N that we define below.
If g(n) is computable in time O(p(n)), then A ∈ NP.

For sets X and Y define X △ Y = (X\Y) ∪ (Y \X).

Computing g(n)

12 / 21

g(0) = g(1) = 2. If n ≥ 2 then g(n) is computed as follows.

■ 1st stage Compute g(0), g(1), g(2),

◆ Stop after n time units.

◆ Let u be the largest value, such that g(u) was computed. Let
k = g(u).

■ 2nd stage Let i = ⌊k
2
⌋. For j = 0, 1, 2, . . ., check whether

Bj ∈ Li XOR Bj ∈ A Bj ∈ SAT XOR fi(Bj) ∈ A
(k is even) (k is odd)

◆ Stop after n time units.

◆ If found such Bj then return k + 1. Else return k.

Claim: A 6∈ P

13 / 21

■ Otherwise: ∃i : A = Li. Consider smallest such i.

■ Then g(n) never grows past 2i.

■ If g(n) = 2i almost always, then A△ SAT is finite. Hence
SAT ∈ P.

■ g(n) = 2i′ almost always, where i′ < i is impossible by minimality
of i.

■ g(n) = 2i′ + 1 almost always would mean that fi′ reduces SAT to
A. I.e. SAT ∈ P.

Claim: SAT is not reducible to A

14 / 21

■ Otherwise: ∃i : fi(SAT) = A. Consider smallest such i.

■ Then g(n) never grows past 2i+ 1.

■ If g(n) = 2i+ 1 almost always, then A is finite. Hence A ∈ P and
also SAT ∈ P.

■ g(n) = 2i′ + 1 almost always, where i′ < i is impossible by
minimality of i.

■ g(n) = 2i′ almost always would mean A = Li′ . Hence A ∈ P and
also SAT ∈ P.

NP-intermediate problems

15 / 21

Problems conjectured to be NP-intermediate are

■ graph isomorphism

■ factoring

◆ Given n and an interval [k, l]. Does n have a factor in that
interval?

Oracle Turing Machines

16 / 21

■ An Oracle TM (det. or non-det.) M is a TM with

◆ A designated tape — the query tape

◆ Three designated states qquery, qyes, qno.

■ An oracle O is a subset of {0, 1}∗.

■ Whenever M running together with O (denoted MO) goes into
state qquery,

◆ the contents of query tape is interpreted as a bit-string x;

◆ M goes to state qyes if x ∈ O. Otherwise M goes to state qno.

◆ This takes a single step.

An oracle O gives us relativized complexity classes PO, NPO, etc.

Limits of diagonalization

17 / 21

■ The diagonalization proofs used the facts that

◆ there is an efficient mapping between bit-strings and TMs

◆ efficient universal TMs exist.

■ The proofs did not really consider the internal workings of the TMs
Mi from the enumeration of all TMs.

■ All these proofs would go through also for oracle TMs.

■ Can a similar proof decide P
?
= NP.

Theorem. There exist A,B ⊆ {0, 1}∗, such that PA = NPA and
PB 6= NPB.

The language EXPCOM

18 / 21

Consider the language

EXPCOM = {〈M,x, 1n〉 |DTM M accepts x in ≤ 2n steps} .

This is a complete language for exponential-time computation.

A computation in NPEXPCOM on input of length n would

■ non-deterministically choose a certificate of length ≤ p(n);

■ (make up to p(n) steps), solve up to p(n) problems, each requiring
up to 2p(n) steps.

A deterministic algorithm would need at most
2p(n) · p(n) · 2p(n) = 2(p(n))

2 log p(n) steps. Fits in EXPCOM.

Thus P EXPCOM = NPEXPCOM.

The oracle B

19 / 21

For any B ⊆ {0, 1}∗ let

UB = {1n | ∃x : |x| = n ∧ x ∈ B} .

For any B we have UB ∈ NPB. Exercise. Why?

We’ll now construct a language B, such that UB 6∈ PB.

The oracle B

20 / 21

Let M1,M2, . . . be the enumeration of oracle DTM-s.
We will now define partial functions ϕ0, ϕ1, . . . from {0, 1}∗ to {yes, no},
such that

■ ϕ0 is always undefined.

■ Each ϕi is defined only on a finite subset of {0, 1}∗.

■ If ϕi(x) is defined, then ϕi+1(x) = ϕi(x).

■ For each x ∈ {0, 1}∗ there exists i, such that ϕi(x) is defined.

In the end we define

B = {x ∈ {0, 1}∗ | ∃i : ϕi(x) = yes} .

Let t be a superpolynomial function, such that ∀n : t(n) < 2n

Constructing ϕi+1

21 / 21

■ Set ϕi+1 = ϕi.

■ Let n = (maxϕi(x) is defined |x|) + 1.

■ Run M
(·)
i+1(1

n) for t(n) steps. If Mi queries for x, then

◆ If ϕi(x) is defined, then answer ϕi(x).

◆ If ϕi(x) is not defined, then answer no.

■ Set ϕi+1 = ϕi+1[x 7→ no].

■ If M
(·)
i+1 stops in t(n) steps, then

◆ If M
(·)
i+1 accepts, then set ϕi+1 = ϕi+1[{0, 1}n 7→ no]

◆ If M
(·)
i+1 rejects then pick x ∈ {0, 1}n that M

(·)
i+1 did not query,

set ϕi+1 = ϕi+1[x 7→ yes].

	Reminder. Encoding TM-s as bit-strings
	Warmup. The halting problem
	(Deterministic) time hierarchy theorem
	Proof
	Non-deterministic time hierarchy theorem
	Proof
	DNTIME(g)
	DNTIME(f)
	¶ … ??? … NP-completeness
	Proof
	Computing g(n)
	Claim: A¶
	Claim: SAT is not reducible to A
	NP-intermediate problems
	Oracle Turing Machines
	Limits of diagonalization
	The language EXPCOM
	The oracle B
	The oracle B
	Constructing i+1

