Time hierarchy.
Diagonalization arguments.

Reminder. Encoding TM-s as bit-strings

m A k-tape DTM or NTM (T', Q, 9, qo, @F) can be encoded as a
bit-string . One has to mention

[0 the number of tapes k; the sizes of I' and Q);
[0 the element qq, elements of Qp;

[0 the points of 0.

m Let the encoding M <+ « satisfy the following:

0 each a € {0, 1}* encodes some TM,;
[0 each TM M is encoded by an infinite number of bit-strings.

m Let M, be the TM encoded by .

2 /21

Warmup. The halting problem

Consider the language
HALT = {(a, z) | M, stops on input =} .

Theorem. HALT is not accepted by any TM.

m Proof by contradiction. Assume Mpyarr accepts HALT.

m Let M'(x) first invoke Myapr({z,x)).

O If Myarr accepts, then M’ diverges.
O If Myarr rejects, then M’ returns 1.

m Let 8 be an encoding of M’.
m What does M’((3) do?

3/21

(Deterministic) time hierarchy theorem

m Let f and g be two time-constructible functions, such that
f(n) >mn and An.f(n)log f(n) € o(g).

» Theorem. DTIME(f) C DTIME(g).

m Remark. The logarithmic factor comes from the universal TM.

Proof. Let h be a function computable in time O(g), such that
" hew(f)
m \n.h(n)logh(n) € O(g).

(you can pick h(n) = |g(n)/logg(n)])

4 /21

Proof

Define the language D as follows:
D ={a € {0,1}" | M, accepts o in < h(|a|) steps}® .
We show that D ¢ DTIME(f).

m let L € DTIME(f). Let M accept L in time ¢ - f for some
constant c.

m Let M = M, for some o € {0,1}*, where h(|a|)/f(|a|) > c.
m Wegetae Liffag D. Hence D # L.

At the same time, D € DTIME(g). A universal machine working in time
An.h(n)log h(n) can accept D.

5/ 21

Non-deterministic time hierarchy theorem

m Let f and g be two time-constructible functions, such that
f(n) >nand An.f(n+ 1) € o(g).

m Theorem. NTIME(f) C NTIME(g).
m Note: no logarithmic factor!

m Exercise. Show that a k-tape NTM can be simulated in linear time
on a 3-tape NTM.

Proof. Let h and A’ be functions computable in time O(g), such that
m \n.f(n+1) € o(h)

n ' € o(h) (E.g. take h = \/fg and h/ = \/Jh)
m heog).

6 /21

Proof

Define a function ¢ as follows

p(1) =2
(i +1) = (i (7))

For each n, let (n) = max{i| (i) < n}. Define

[li:=pn) -1)
D=1 n # o(i + 1) A M; accepts 1" in time h/(n) >
B OR
[n =i+ 1) A M,; rejects 1907 in time g(p(i) +1) |

We must show D & NTIME(f) and D € NTIME(g).

7 /21

D € NTIME(g)

[|i:=¢(n) -1)
D=1J1" # (i + 1) A M; accepts 1" in time h/(n) >
- OR
| n=(i+ 1) AM; rejects 19T in time g(p(i) + 1)

m To compute p(n), compute (1), p(2),... until > n.
m If n # ©(i + 1) then nondeterministically simulate M.

m If n = (i + 1), then search through all O(29¢()+1) computation
paths of M,.

[0 There is sufficient time for that, because n is exponentially
larger than (7).

8 /21

D & NTIME(f)

m Let L € NTIME(f). Let L be accepted by M; for some . Assume
L=D.

m \We have

1P+ e [e 190+ ¢ D o 1900+2 ¢ T,
19042 ¢ [o 19042 ¢ D o 19043 ¢ [,

190D ¢ [o 190+D) ¢ D o 190+ ¢ [

9 /21

P... 7?27 ... NP-completeness

Theorem (Ladner). If P # NP then there exists a language A € NP\P
that is not NP-complete.
Proof. We will construct such an A. Let

m My, M,, ... be all polynomial-time DTMs.

[0 Let L; be the language accepted by M;.

m fi, fo,... be all polynomial-time computable functions.
0 M; works in, f; is computable in time O(n").
0 From 4, it is easy to find M;, f;.

m Let By, By,... be the enumeration of all bit-strings

These M, Ms, ... and fi, fa,... are given. We will now construct A,
such that. ..

10 / 21

Proof

m Claim R;: A=#£L;

m Claim §;: there is an z € {0,1}*, such that x € SAT XOR

[0 i.e. f; does not polynomially many-one reduce SAT to A.

m Claim: A& NP
We set
A={x e {0,1}" |z € SAT and g(|z|) is even}

for a function g : N — N that we define below.
If g(n) is computable in time O(p(n)), then A € NP.

For sets X and Y define X AY = (X\Y)U (Y\X).

11 / 21

Computing g(n)

g(0) =g(1) = 2. If n > 2 then g(n) is computed as follows.
m 1st stage Compute ¢(0),g(1),9(2),....

[0 Stop after n time units.

O Let u be the largest value, such that g(u) was computed. Let
k= g(u).

m 2nd stage Let i = |4]. For j =0,1,2,..., check whether
B;e L; XOR B; € A | B; € SAT XOR f;,(B;) € A
(k is even) (k is odd)

[0 Stop after n time units.

O If found such B, then return £ + 1. Else return £.

12 / 21

Claim: A¢P

Otherwise: di : A = L,. Consider smallest such 7.
Then g(n) never grows past 2i.

If g(n) = 2i almost always, then A A SAT is finite. Hence
SAT € P.

g(n) = 2" almost always, where ¢" < i is impossible by minimality
of 1.

g(n) = 2¢’ + 1 almost always would mean that f; reduces SAT to
A. l.e. SAT € P.

13 / 21

Claim: SAT is not reducible to A

Otherwise: Ji : f;(SAT) = A. Consider smallest such i.

Then g(n) never grows past 2i + 1.

If g(n) = 2i+ 1 almost always, then A is finite. Hence A € P and
also SAT € P.

g(n) = 2i' + 1 almost always, where i’ < i is impossible by
minimality of i.

g(n) = 2¢" almost always would mean A = L;. Hence A € P and
also SAT € P.

14 / 21

NP-intermediate problems

Problems conjectured to be NP-intermediate are
m graph isomorphism
m factoring

0 Given n and an interval |k,l]. Does n have a factor in that
interval?

15 / 21

Oracle Turing Machines

m An Oracle TM (det. or non-det.) M is a TM with
[0 A designated tape — the query tape
O Three designated states qquery, Gyes: Gno-

m An oracle O is a subset of {0, 1}*.

m Whenever M running together with O (denoted M?) goes into
state gquery

[0 the contents of query tape is interpreted as a bit-string x;
0 M goes to state ques If z € O. Otherwise M goes to state gp,.
[0 This takes a single step.

An oracle O gives us relativized complexity classes P°, NP, etc.

16 / 21

Limits of diagonalization

m The diagonalization proofs used the facts that
[0 there is an efficient mapping between bit-strings and TMs

[1 efficient universal TMs exist.

m The proofs did not really consider the internal workings of the TMs
M; from the enumeration of all TMs.

m All these proofs would go through also for oracle TMs.

m Can a similar proof decide P ~ NP.

Theorem. There exist A, B C {0, 1}*, such that P4 = NP and
PP £ NP”.

17 / 21

The language EXPCOM

Consider the language
EXPCOM = {(M,z,1") |DTM M accepts = in < 2" steps} .
This is a complete language for exponential-time computation.
A computation in NPE*PM on input of length n would
m non-deterministically choose a certificate of length < p(n);

m (make up to p(n) steps), solve up to p(n) problems, each requiring
up to 2P(" steps.

A deterministic algorithm would need at most
20(n) . p(p) - 20(n) = 2@(n))*logp(n) steps. Fits in EXPCOM.

Thus PEXPCOM _ \pEXPCOM

18 / 21

The oracle B

For any B C {0,1}* let
Ug={1"|3z: |x|=nAx € B} .
For any B we have Ug € NP”. Exercise. Why?

We'll now construct a language B, such that Ug & PP5.

19 / 21

The oracle B

Let My, Ms, ... be the enumeration of oracle DTM-s.
We will now define partial functions g, @1, ... from {0,1}* to {yes, no},
such that

m (g is always undefined.

m Each o; is defined only on a finite subset of {0, 1}".

m If p;(x) is defined, then v, 1(x) = p;(x).

m For each x € {0, 1}* there exists 4, such that ¢;(x) is defined.

In the end we define
B={x e {0,1}"|3i: p;(x) = yes} .

Let ¢ be a superpolynomial function, such that Vn : t(n) < 2"

20 / 21

Constructing ¢,

Set wiy1 = ;.
Let n = (max%(x) is defined ‘CED —+ 1.
Run Mz'(—'i—)l(ln) for t(n) steps. If M; queries for x, then

O If ;(x) is defined, then answer o;(x).
O If ¢;(x) is not defined, then answer no.

» Set ;11 = Yir1|T — nol.

If M< , stops in t(n) steps, then

O If M(+1 accepts, then set ;.1 = ©;11[{0,1}" — no]

O If M(/; rejects then pick z € {0,1}" that]\4Z(+)1 did not query,
set Pi+1 = %—H[m — yes]

21 / 21

	Reminder. Encoding TM-s as bit-strings
	Warmup. The halting problem
	(Deterministic) time hierarchy theorem
	Proof
	Non-deterministic time hierarchy theorem
	Proof
	DNTIME(g)
	DNTIME(f)
	¶ … ??? … NP-completeness
	Proof
	Computing g(n)
	Claim: A¶
	Claim: SAT is not reducible to A
	NP-intermediate problems
	Oracle Turing Machines
	Limits of diagonalization
	The language EXPCOM
	The oracle B
	The oracle B
	Constructing i+1

