
Protocol calculus:P ::= stopj (x := E);Pj (x := new nonce=key= : : : =channel);Pj (x := receive(y));Pj (send x1 on x2);Pj P1 j P2j if E1 = E2 then P1 else P2j let x = D(E1; : : : ; Ek) in P1 else P2j !PE ::= x j C(E1; : : : ; Ek)
Each variable is defined only once.



� The communication happens on channels.� To read a message, one has to know the corresponding

channel.� To write a message, one also has to know the channel

where it is to be written.

– Communication on a secret channel is invisible to

the adversary.� Non-public channels should not normally be used in

protocols.� They may be used for ideal protocols.



Shorter (and more traditional) write-up:P ::= 0j (x := E):Pj (�x)Pj y(x):Pj x2hx1i;Pj P1 j P2j [E1 = E2℄P j [E1 6= E2℄Pj let x = D(E1; : : : ; Ek) in P1 else P2j !PE ::= x j C(E1; : : : ; Ek)



To simplify notation (and be more general):� Consider both constructors and destructors as con-

structors.� Consider terms modulo an equational theory.



Example: pairing:� Constructors: (�; �), �1, �2.� Equations: �1((x; y)) = x, �2((x; y)) = y.
Example: symmetric encryption:� Constructors: Es, Ds.� Equation: Ds(k;Es(k; x)) = x.
Example: asymmetric encryption:� Constructors: pk, Ea, Da.� Equation: Da(k;E(pk(k); x)) = x.
Exercise: Diffie-Hellman? XOR?

A notion of types would be nice, too. . .



Our protocol from the first lecture:A�!pubB : f[KA; NA;KAB℄gKBB�!pubA : f[NA; NB;KB℄gKAA�!pubB : f[NA; NB℄gKB



(�skA)(�skB)(pi := (pk(skA); pk(skB))):hpii:(!PAj!PB)

PA � (pkB):(�nA)(�kAB)(m1 := E(pkB; (pk(skA); nA; kAB))):hm1i:(m2):let (n0A; nB; pk0B) = D(skA;m2) in[n0A = nA℄[pk0B = pkB℄(m3 := E(pkB; (nA; nB))):hm3i:OK

PB � (w1):let (pkA; vA; lAB) = D(skB; w1) in(�vB)(w2 := E(pkA; (vA; vB; pk(skB)))):hw2i:(w3):

let (v0A; v0B) = D(skB; w3) in [v0A = vA℄[v0B = vB℄OK



Idealized version (s is a secret channel):A �!pub B : f[KA; NA; N1℄gKBB �!pub A : f[NA; NB;KB℄gKAA �!pub B : f[NA; NB℄gKBA �!s B : (NA; NB;KAB)B �!s A : (NA; NB)
Exercise. Discuss the security of this protocol. Confiden-

tiality? Authentication?



(�skA)(�skB)(�s)(pi := (pk(skA); pk(skB))):hpii:(!PAj!PB)

PA � (pkB):(�nA)(�n1)(m1 := E(pkB; (pk(skA); nA; n1))):hm1i:(m2):let (n0A; nB; pk0B) = D(skA;m2) in[n0A = nA℄[pk0B = pkB℄(m3 := E(pkB; (nA; nB))):hm3i:(�kAB)(m4 := (na; nb; kAB):shm4i:s(n00A; n00B):[nA = n00A℄[nB = n00B℄OK

PB � (w1):let (pkA; vA;_) = D(skB; w1) in(�vB)(w2 := E(pkA; (vA; vB; pk(skB)))):hw2i:(w3):

let (v0A; v0B) = D(skB; w3) in [v0A = vA℄[v0B = vB℄s(v00A; v00B; lAB):[vA = v00A℄[vB = v00B℄(m5 := (vA; vB)):shm5i:OK



� We want real ' ideal (equivalence of processes).� We use testing equivalence.� A test is a pair (R;�) of a process and a public channel.� P passes the test (R;�), if P j R sends something on

channel �.� P ' Q if they pass the same tests.� Testing equivalence is a congruence.

– If P � Q then C[P ℄ � C[Q℄ for all processes C[℄

with a hole (contexts).

– C does not see the variables defined by P and Q.P and Q see the variables defined by C.

In general, testing equivalence is hard to verify directly,

because we have to quantify over all possible (adversarial)

processes R.



Example of processes that are not testing equivalent. . .



Testing equivalence is hard to verify because� We are concerned only about the “ends” of the runs ofP and Q.� Before reaching the end, the processes may do what-

ever they like.� We run P and Q in parallel with an arbitrary R.

A bisimulation relation relates the states of currently run-

ning processes.

If two processes are bisimilar, then they� React the same way to the same inputs;� are afterwards again bisimilar.



s1
s2 s3

t1
t2

a a a
bbb b

s1 � t1, s2 � t2, s3 � t2.



A process in its initial state is just a process.

A running process consists of� a set of threads, each of them

– a process that remains to be executed;

– a memory that assigns values to all already defined

variables in this thread.� The sequence of pairs (;M), such that M has been

sent out on a public channel .� The new values created by this process.



Static equivalence:� Given two memories M1 and M2 with the same vari-

ables.

– . . . or sequences of values.� Try to tell them apart.� Devise a computation that returns YES for one of them

and NO for the other.� If the sent-out variables of two currently running pro-

cesses cannot be told apart then they are statically

equivalent.



Bisimilarity, as known for process calculi, is too strong to

be meaningful for cryptographic processes.

It does not take into account the properties of encryption:� The environment distinguishes different ciphertexts.� The environment can give any message as an input to

the process.



A relation R between running processes is a cryptographic

simulation if (P;MP ;NP ) R (Q;MQ;NQ) implies� The memories MP and MQ cannot be told apart.� If P �! P 0, creating the values in N0P , then Q �!� Q0,
creating the values in N0Q and(P 0;MP ;NP [N0P ) R (Q0;MQ;NQ [N0Q).
– Assume N0P and N0Q are different from everything

else.� If P hMP i�! P 0 then Q �!�hMQi�!�!� Q0 and(P 0;MP : (;MP );NP ) R (Q0;MQ : (;MQ);NQ).
– In particular, MP : (;MP ) and MQ : (;MQ) can-

not be told apart.



� If P (MP )�! P 0, such that MP = f(MP ; n1; n2; : : : ; nk)

for

– an expression f that does not create new values;

– values n1; : : : ; nk 62 NP [NQ

then Q �!�(MQ)�!�!� Q0 and(P 0;MP : (�; n1) � � � (�; nk);NP ) R (Q0;MQ : (�; n1) � � � (�; nk);NQ)

where MQ = f(MQ; n1; n2; : : : ; nk).
A relation R between running processes is a cryptographic

bisimulation if R and R�1 are cryptographic simulations.



Our real example is bisimilar to the ideal example.

Indeed, the first three messages are exchanged in the same

way.

The last two messages of the ideal protocol will always

succeed. . . or do they?



Protocol composition logic is a framework for systematiz-

ing the security proofs for cryptographic protocols.� Language for protocols (roles, principals, runs).� Language for formulas.� Semantics (truth) of formulas.� Axioms and inference rules.



� There are a number of principals, Q1; Q2; : : :.� There may be fixed long-term keys:

– asymmetric encryption and signing keys of princi-

pals;

– shared keys for symmetric encryption between pairs

of principals.

– We’ll invent notation for them when needed. . .

A role is a single-threaded process.� initiator, responder, server. . .

A protocol Q — principals and roles.



A session is a mapping of principals (including the at-

tacker) to roles. Each point in this mapping is a thread.

A run is a sequence of actions.

Actions are� Send(X; t), Rev(X; t)� New(X; t)� Der(X; t), Verify(X; t)  � successful actions onlyX may be one of the threads of Q or the adversary. t is a

term.

A received term must be sent. A sent term must be con-

structable by the sender.



Formulas:� each action is a formula.� Has(X; t) and Fresh(X; t)� Start(X)� Honest(Q)  � Q is a principal� Exe(Q�; X)� t1 v t2� ' ^  , :', other propositional connectives� 8x:' and 9x:'� �' and '� If P is a single-threaded process, then [P ℄X'



Let R be a run of protocol Q and E a mapping from vari-

ables to terms.

We define the relation R;E �Q '.

For a closed formula ', we abbreviate it to R �Q ' (' is

correct in the run R of protocol Q).

We say �Q ' if R �Q ' for all runs R.



R �Q hactioni if hactioni is the last action of the run R.Ra;E �Q' if R;E �Q '.R;E �Q �' if R0; E �Q ' for some prefix R0 of R.R;E �Q t1 v t2 if t1 is a subterm of t2.R �Q Start(X) if R contains no actions of the thread X.R;E �Q 9x:' if R;E[x 7! t℄ �Q ' for some term t.R;E �Q ' ^  if principal Q executes the thread X.R;E �Q ' and R;E �Q  . Similar for other propositional

connectives.R �Q Exe(Q�; X) if principal Q is executing the thread X

in the role �.R;E �Q Has(X; t) if t can be constructed from the terms

that the thread X has received or generated.



R;E �Q Fresh(X; t) if� thread X generated some new value m;� t “significantly” depends on m;� X has not sent out any term that contains m.R �Q Honest(Q) if the threads of the principal Q in the

run R follow the protocol Q.R;E �Q [P ℄X', if� for all runs R0, where R0jX is the sequence of actions

performed by P ;� for the environment E 0 that maps the variables of P

to values that P assigns to them in R0,
we have RkR0; E [E 0 �Q '.



Some axioms:� All true statements of predicate calculus.� [�x℄X(Has(X;x) ^ Fresh(X;x))� [�x℄X(Has(Y; x)) Y = X)� [action℄Xaction� [receive x℄XHas(X;x)� [verify([fmg℄KQ)℄XVerify(X; [fmg℄KQ)� Honest(Q) ^Der(X; f[m℄gKQ)) Exe(Q;X)� Has(X; f[m℄gKQ) ^Has(X;K�1Q )) Has(X;m)� Exe(Q;X)) Has(X;K�1Q )� [P ℄X' ^ [P ℄X ) [P ℄X(' ^  ). Same for � and .



Inference rules:' ')   '�' ''

Start(X)) ' 8� 2 Q 8A 2 � : ') [A℄X'`Q Exe(Q;X) ^Honest(Q)) '

where � ranges over all roles in Q and A over all protocol

steps in �.
The last rule allows us to establish protocol invariants.



A�!B : f[KA; NA;KAB℄gKBB�!A : f[NA; NB;KB℄gKAA�!B : f[NA; NB℄gKBB�!A : fMgKAB (if the owner of KA is honest)

Two roles (initiator and responder), three principals (A

and B and the adversary).

Let KI be the public key of the adversary.

We want to show Has(X;M)) (Exe(A;X)_Exe(B;X))

if A and B are both honest.

We also want to show that some authentication property

holds.



Honest(Q)^Exe(QI ; X)^Send(X; f[KQ; NA;KAB℄gKQ0 )) (Fresh(X;NA) ^ Fresh(X;KAB))

Honest(Q)^Exe(QR; X)^Send(X; f[NA; NB;KQ℄gKQ0 ))�Rev(X; f[KQ; NA;KAB℄gKQ) ^Fresh(X;NB)

Honest(Q) ^ Exe(QI ; X) ^ Send(X; f[NA; NB℄gKQ0 ))�(Rev(X; f[NA; NB;KQ0 ℄gKQ)^�Send(X; f[KQ; NA;KAB℄gKQ0 ))

Honest(Q) ^ Exe(QR; X) ^ Send(X; fMgKAB))(Q0 = A _Q0 = B) ^ �(Rev(X; f[NA; NB℄gKQ0 )^�(Send(X; f[NA; NB;KQ℄gKQ0 )^�Rev(X; f[KQ0 ; NA;KAB℄gKQ)))



Honest(Q) ^ Exe(QI ; X) ^ Send(X;m1) ^: �Send(X;m)) m = f[KQ; NA;KAB℄gKQ0

Honest(Q) ^ Exe(QI ; X) ^ Send(X;m1) ^ �Send(X;m)) m = f[NA; NB℄gKQ0

:�Honest(Q) ^ Exe(QI ; X) ^ Send(X;m1) ^ �(Send(X;m2) ^�Send(X;m3))�

Same ordering axioms also for the responder.



Authentication as matching conversation.AuthIQ;X � Start(X)) [�I ℄X�9Q0; Y : Honest(Q0)^Exe(Q0R; Y )^Send(X; f[KQ; NA;KAB℄gKQ0 ) <Rev(Y; f[KQ; NA;KAB℄gKQ0 ) <Send(Y; f[NA; NB;KQ0 ℄gKQ) <Rev(X; f[NA; NB;KQ0 ℄gKQ)�

Here A < B � �(B ^�A)A1 < A2 < � � � < An � A1 < A2 ^A2 < A3 ^ � � � ^ An�1 < An

We want to showHonest(Q) ^ Exe(QI ; X)) AuthIQ;X


