Secret Sharing
Principle

- There is a set of parties $\mathbf{P} = \{P_1, \ldots, P_n\}$.
- There is some (secret) value v.
 - Shares of v are distributed among P_1, \ldots, P_n.
- There is a set of subsets of parties $\mathcal{S} \subseteq \mathcal{P}(\mathbf{P})$.
 - \mathcal{S} is upwards closed — if $P_1 \in \mathcal{S}$ and $P_1 \subseteq P_2$, then also $P_2 \in \mathcal{S}$.
 - \mathcal{S} is called an access structure.
 - Let us call the elements of \mathcal{S} privileged sets.
- Certain parties P_{i_1}, \ldots, P_{i_k} have come together and are trying to find out v.
- They must succeed only if $\{P_{i_1}, \ldots, P_{i_k}\} \in \mathcal{S}$.
General solution

- Let v be an element of some (additive) group G.
- Express φ as a propositional formula $\overline{\varphi}(x_1, \ldots, x_n)$, such that for each $Q \subseteq P$

 \[
 \overline{\varphi}(P_1 \in Q, \ldots, P_n \in Q) \text{ iff } Q \in \varphi.
 \]

 - Use only operations AND and OR (of arbitrary arity) in $\overline{\varphi}$.
- Define a share for each node in the syntax tree of $\overline{\varphi}$:
 - The share of the root node is v.
 - If the share of an OR-node is x, then the shares of all its immediate descendants are x, too.
 - If the share of an AND-node of arity m is x, then generate $r_1, \ldots, r_{m-1} \in_R G$ and put $r_m = x - \sum_{i=1}^{m-1} r_i$. The shares of the immediate descendants are r_1, \ldots, r_m.
- Give the party P_i the shares of all leaf nodes marked with x_i.

Example

Let $\mathbf{P} = \{P_1, P_2, Q_1, Q_2, Q_3\}$.

- Let P_1 and P_2 be allowed to know the secret.
- Let two Q-s be allowed to replace one of the P-s.

\[
\overline{\varphi}(P_1, P_2, Q_1, Q_2, Q_3) = P_1 \land P_2 \lor P_1 \land (Q_1 \land Q_2 \lor Q_1 \land Q_3 \lor Q_2 \land Q_3) \lor P_2 \land (Q_1 \land Q_2 \lor Q_1 \land Q_3 \lor Q_2 \land Q_3)
\]
Example

\[
\begin{array}{c}
\lor \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\end{array}
\]

\[
\begin{array}{c}
\land \quad \land \quad \land \quad \land \quad \land \\
P_1 \quad P_2 \\
P_1 \\
P_2 \\
Q_1 \quad Q_2 \\
Q_1 \quad Q_3 \\
Q_2 \quad Q_3 \\
Q_1 \quad Q_2 \\
Q_1 \quad Q_3 \\
Q_2 \quad Q_3 \\
\end{array}
\]
Example
Example
Example
Example
Example
Example

- We generate the values \(r_1, \ldots, r_9 \in \mathbb{R} \) and give the following values to following parties:
 - \(P_1 \) learns \(s_{11} = v - r_1 \) and \(s_{12} = v - r_2 \);
 - \(P_2 \) learns \(s_{21} = r_1 \) and \(s_{22} = v - r_3 \);
 - \(Q_1 \) learns \(t_{11} = r_4, t_{12} = r_5, t_{13} = r_7 \) and \(t_{14} = r_8 \);
 - \(Q_2 \) learns \(t_{21} = r_2 - r_4, t_{22} = r_6, t_{23} = r_3 - r_7 \) and \(t_{24} = r_9 \);
 - \(Q_3 \) learns \(t_{31} = r_2 - r_5, t_{32} = r_2 - r_6, t_{33} = r_3 - r_8 \) and \(t_{34} = r_3 - r_9 \).

- When a privileged set of parties meet then they figure out which of the values to add up to recover \(v \).
- A non-privileged set gets no information about \(v \).
The components

- Number of parties n.
- The secret v.
- The parties P_1, \ldots, P_n holding the shares of v, and the dealer D that originally knows v.
- The access structure \mathcal{P}.
 - \mathcal{P} is a t-threshold structure if all minimal elements in \mathcal{P} have the cardinality t.
- The dealing protocol, where D distributes the shares among P_1, \ldots, P_n.
- The recovery protocol, where a privileged set computes v.
Shamir’s threshold secret sharing scheme

- Let \(v \in \mathbb{F} \) for some (finite) field \(\mathbb{F} \).
 - In practice, \(\mathbb{F} = \mathbb{Z}_p \) for some suitable prime \(p \).
- Shamir’s \((n, t)\)-scheme is for \(n \) parties, where \(\wp \) is the \(t \)-threshold structure and \(n < |\mathbb{F}| \).
- Dealing:
 - The dealer randomly chooses values \(a_1, \ldots, a_{t-1} \in \mathbb{F} \).
 - He defines the polynomial
 \[
 q(x) = v + a_1 x + a_2 x^2 + \cdots + a_{t-1} x^{t-1}.
 \]
 - The dealer securely sends to each \(P_i \) his share \(s_i = q(i) \).
- Recovering \(v \):
 - The parties \(P_{i_1}, \ldots, P_{i_t} \) together know that
 - \(q(i_1) = s_i, \ldots, q(i_t) = s_t \);
 - The degree of \(q \) is at most \(t - 1 \).
 - This information is sufficient to recover the coefficients of \(q \).
Theorem. Let $x_1, y_1, \ldots, x_t, y_t \in \mathbb{F}$, such that the values x_1, \ldots, x_t are all different. Then there exists exactly one polynomial q of degree at most $t - 1$, such that $q(x_i) = y_i$ for all $i \in \{1, \ldots, t\}$.

Proof. This polynomial q is (Lagrange interpolation formula)

$$q(x) = \sum_{j=1}^{t} y_j \prod_{k \neq j} \frac{x - x_k}{x_j - x_k}.$$

It’s degree is $\leq t - 1$ and it satisfies $q(x_i) = y_i$ for all i.

There cannot be more than one: if $q'(x_i) = y_i$ for all $i \in \{1, \ldots, t\}$ and $\deg q' \leq t - 1$, then $(q - q')$ is a polynomial of degree at most $t - 1$ with at least t roots (x_1, \ldots, x_t). Hence $q - q' = 0$. \Box
Shamir’s scheme: simpler recovery

- The parties P_{i_1}, \ldots, P_{i_t} are not interested in the entire polynomial, but just the secret value $v = q(0)$.
- According to Lagrange interpolation formula

$$v = \sum_{j=1}^{t} s_{ij} \prod_{k \neq j} \frac{i_k}{i_k - i_j}.$$

- In particular, note that v is computed as a linear combination of the shares s_{ij} with public coefficients.
Security of Shamir’s scheme

- Suppose that we are given shares $s_{i_1}, \ldots, s_{i_{t-1}}$.
- Then for each possible value of v, there exists exactly one polynomial q of degree at most t, such that

\[
q(0) = v, \quad q(i_1) = s_{i_1}, \ldots \quad q(i_{t-1}) = s_{i_{t-1}}.
\]

- Hence all values of v are possible. Moreover, they are equally possible.
 - There is the same number of suitable polynomials for each value of v.
- Similarly, if we have even less shares then all values of v are equally possible.
Let two secrets be shared:

- the shares of v are s_1, \ldots, s_n;
- the shares of v' are s'_1, \ldots, s'_n.

Let $a, b \in \mathbb{F}$. How can the parties P_1, \ldots, P_n obtain shares for the value $av + bv'$?
Verifiable secret sharing

- If some party P_i is malicious, then it can input a wrong share to the recovery protocol.
- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_i.
- In **verifiable secret sharing** the parties commit to the shares they have received.
Verifiable secret sharing

- If some party P_i is malicious, then it can input a wrong share to the recovery protocol.
- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_i.
- In verifiable secret sharing the parties commit to the shares they have received.
- A malicious party P_i may also send s_{it} to one party, but s'_{it} to some other party.
- In multi-party protocols with malicious participants, a broadcast channel is often needed.
 - We thus assume the existence of a broadcast channel.
- It can be implemented using point-to-point channels and the Byzantine agreement.
Feldman’s scheme

- Let $\mathbb{F} = \mathbb{Z}_p$. Let G be a group with hard discrete log., such that $|G|$ is divisible by p. Let $g \in G$ have order p.
- Let D use Shamir’s scheme to share v. When D has constructed the polynomial $q(x) = v + \sum_{i=1}^{t-1} a_i x^i$, he (authentically) broadcasts

$$y_0 = g^v, \quad y_1 = g^{a_1}, \quad \ldots, \quad y_{t-1} = g^{a_{t-1}}$$

in addition to sending the shares to the parties P_i.
- Whenever a party sees a share s_j he checks its consistency:

$$g^{s_j} \overset{?}{=} \prod_{i=0}^{t-1} y_j^{i_j}.$$

Exercise. What does the consistency check do?
Security of Feldman’s scheme

- Nobody can cheat — the “commitments” y_0, \ldots, y_{t-1} fix the polynomial q.
 - Everybody can check whether $q(i)$ equals a given value.
- Something about the secret can be leaked, because $y_0 = g^v$ does not fully hide v.
 - Use only the hard-core bits of discrete logarithm to store the “real” secret in v.
- This makes the shares larger.
Recall Pedersen’s commitment scheme:

- Let $h \in G$ be another element of order p, such that nobody knows $\log_g h$.
- To commit $m \in \mathbb{Z}_p$, the committer randomly generates $r \in \mathbb{Z}_p$ and sends g^mh^r to the verifier.
- To open the commitment, send (m, r) to the verifier.
- The commitment is unconditionally hiding, because g^mh^r is a random element of $\langle g \rangle$.
- The commitment is computationally binding, because the ability to open a commitment in two different ways allows to compute $\log_g h$.

In Pedersen’s VSS, the dealer commits to the coefficients of the polynomial q.
Pedersen’s scheme

■ Dealing protocol

◆ \(D \) randomly chooses \(a_1, \ldots, a_{t-1}, a'_0, \ldots, a'_{t-1} \in \mathbb{Z}_p \). Also defines \(a_0 = v \).

◆ Define \(q(x) = \sum_{i=0}^{t-1} a_i x^i \) and \(q'(x) = \sum_{i=0}^{t-1} a'_i x^i \).

◆ The share \((s_i, s'_i)\) of \(P_i \) is \((q(i), q'(i))\).

◆ \(D \) broadcasts \(y_i = g^{a_i} h^{a'_i} \) for \(i \in \{0, \ldots, t-1\} \).

■ Verification: when somebody sees a share \((s_i, s'_i)\), he verifies

\[
g^{s_i} h^{s'_i} \overset{?}= \prod_{i=0}^{t-1} y_i^{j_i}
\]
The broadcast value y_0 hides v unconditionally.

Ability to change a share (or the pair (v, a'_0)) implies the knowledge of $\log_q h$.

Having less than t shares allows one to freely choose the secret v. Then there exists an a'_0 that is consistent with y_0.

Exercise. How to construct linear combinations of shared secrets when using Feldman’s or Pedersen’s secret sharing scheme? I.e. how do the dealer’s commitments change?
Threshold encryption

- Public-key encryption system.
- The public key is a single value.
- The secret key is distributed among several authorities.
- To decrypt a ciphertext c:
 - Each authority computes $D(sk_i, c)$ and broadcasts it.
 - If at least t authorities have broadcast the share of the decrypted ciphertext, the plaintext can be reconstructed from them.
ElGamal encryption scheme

Let G, g, p be as before.

- Secret key — $\alpha \in \mathbb{Z}_p$. Public key — $\chi := g^\alpha$.
- Plaintext space: G. Ciphertext space: $G \times G$.
- To encrypt a plaintext $m \in G$:
 - randomly generate $r \in \mathbb{Z}_p$;
 - output $(g^r, m \cdot \chi^r)$.
- To decrypt a ciphertext (c_1, c_2):
 - output $c_2 \cdot c_1^{-\alpha}$.
- Note, that after the decryption, the value $c_1^\alpha = \chi^r$ is not sensitive any more.
Threshold scheme

- Use ElGamal scheme. Distribute the secret key α among the n authorities P_1, \ldots, P_n using Shamir’s (n, t)-scheme.
 - Let the shares be s_1, \ldots, s_n.
 - Recall that for each $Q = \{i_1, \ldots, i_t\}$ there exist coefficients $\gamma_{i_1}^Q, \ldots, \gamma_{i_t}^Q \in \mathbb{Z}_p$, depending only on Q, such that
 $$\alpha = \sum_{j=1}^t \gamma_{i_j}^Q s_{i_j}.$$

- Decryption:
 - given (c_1, c_2), the authority P_i broadcasts $d_i = c_1^{s_i}$.
 - given d_{i_1}, \ldots, d_{i_t}, where $\{i_1, \ldots, i_t\} = Q$, we find
 $$c_1^\alpha = \prod_{j=1}^t d_{i_j}^{\gamma_{i_j}^Q}$$

 and the plaintext is $m = c_2 \cdot (c_1^\alpha)^{-1}$.

Exercise. How could we use Feldman’s scheme for verifiability?