
Protocol analysis using
ProVerif, 2nd part

ProVerif’s input language

2 / 9

■ ProVerif internally represents protocols as sets of Horn clauses.
■ The protocol can be entered as Horn clauses, or as a process in a

language similar to applied π-calculus.
■ Invoking the analyzer:

◆ ./analyzer file, if file contains the protocol specification as
Horn clauses;

◆ ./analyzer -in pi file, if file contains the protocol
specification in applied π-calculus.

A process

3 / 9

A process P is one of

0 does nothing
new n;P ′ create new atom n, then P ′

in(c, p);P ′ bind a msg from chan. c to var. p, then P ′

out(c,m);P ′ send the msg m on chan. c, then P ′

let p = M in P ′ else P ′′ bind p to M , do P ′ if success, P ′′ otherwise
P1 | P2 do P1 and P2 in parallel
!P ′ replicate P ′. !P ′ ≡ P ′|!P ′

event M ;P ′ emit event ! M , then P ′

A channel can be read (i.e. intercepted) and written by a party that
knows its name.
A process represents all sessions of all parties.

Protocol specification

4 / 9

Declare

■ message constructors;

◆ constants, channel names, event names, constructors, etc.
◆ whether adversary has access to them or not

■ message destructors;

◆ whether adversary has access to them or not
◆ In the ProVerif language, terms cannot be “automatically” taken

apart or parsed

■ like we did with Horn clauses

■ predicates (if you need them);
■ queries;
■ the process.

Demo. . .

5 / 9

TODO:

■ proverif1.82/examples/pi/secr-auth/piyahalom

◆ Analysis of the code and execution result

■ proverif1.82/examples/pi/secr-auth/piyahalom-bid

Useful trick: procedures / functions

6 / 9

Function implementation
private free f in

let f =

in(f in, (f out,arg));

......

out(f out, result).

Function call:
...

new f out;

out(f in, (f out, arg));

in(f out, result);

...

The Process contains:
process ...| !f | ...

Other properties: non-interference

7 / 9

■ Let P (~x) be a process depending on variables ~x.
■ Informally, P does not preserve secrecy of ~x, if

◆ for some ~M , ~N

◆ some attacker can observe the difference in behaviour of P (~M)

and P (~N).

■ e.g. P (x, y) ≡ new k; out(c, ({x}
k
, {y}

k
)) does not preserve the

secrecy of (x, y).
■ Indeed, the outputs made by P (M,M) and P (M,N) look different.
■ Non-interference should be used if the set where the secrets come

from is small.
■ example: proverif1.82/examples/pi/noninterf/piyahalom

Global synchronization — phases

8 / 9

■ ProVerif’s process definition allows the construct

phase n;P

where n is an integer.
■ P executes after the time point n has been reached. The commands

preceeding phase n execute before that point.
■ Some applications, e.g. voting, have such synchronization points.

Observational equivalence

9 / 9

■ ProVerif’s messages may contain the construct

choice[M1,M2]

■ This defines two processes:

◆ One, where all choice-constructs are replaced with their left
arguments.

◆ Another, where all choice-constructs are replaced with their
right arguments.

■ ProVerif tries to find whether some attacker can observe the
difference in behaviour of these two processes.

■ example: proverif1.82/examples/pi/choice/pivote
■ A form of offline guessing attack

	ProVerif's input language
	A process
	Protocol specification
	Demo…
	Useful trick: procedures / functions
	Other properties: non-interference
	Global synchronization --- phases
	Observational equivalence

