
Protocol analysis using
ProVerif, 2nd part

ProVerif’s input language

2 / 22

■ ProVerif internally represents protocols as sets of Horn clauses.

■ The protocol can be entered as Horn clauses, or as a process in a
language similar to spi-calculus.

■ Invoking the analyzer:

◆ ./proverif file, if file contains the protocol specification as
Horn clauses;

◆ ./proverif -in pi file, if file contains the protocol
specification in applied π-calculus.

A process

3 / 22

A process P is one of

0 does nothing
new n;P ′ create new atom n, then P ′

in(c, p);P ′ bind a msg from chan. c to var. p, then P ′

out(c,m);P ′ send the msg m on chan. c, then P ′

let p = M in P ′ else P ′′ bind p to M , do P ′ if success, P ′′ otherwise
P1 | P2 do P1 and P2 in parallel
!P ′ replicate P ′. !P ′ ≡ P ′|!P ′

event M ;P ′ emit event M , then P ′

A channel can be read (i.e. intercepted) and written by a party that
knows its name.
A process represents all sessions of all parties.

Translation to Horn clauses

4 / 22

■ Just two predicates:

◆ attacker(v) means that the attacker can learn the value v.

◆ mess(c,v) means that message v can be transmitted over
channel c.

■ Each output statement generates a Horn clause stating that if
previous input messages have been transmitted on their channels,
then the message from this statement will be transmitted on this
channel.

◆ Messages on channels do not have “direction of movement”.

◆ This is different from c〈M〉.P | c(x).Q → P |Q{M/x}.

Protocol specification

5 / 22

Declare

■ message constructors;

◆ constants, channel names, event names, constructors, etc.

◆ whether adversary has access to them or not

■ message destructors;

◆ whether adversary has access to them or not

◆ In the ProVerif language, terms cannot be “automatically”
taken apart or parsed

■ like we did with Horn clauses

■ predicates (if you need them);

■ queries;

■ the process.

Demo. . .

6 / 22

TODO:

■ proverif/examples/pi/secr-auth/piyahalom

◆ Analysis of the code and execution result

■ proverif/examples/pi/secr-auth/piyahalom-bid

Analysis: Estonian Mobile-ID identification

7 / 22

■ User’s secret key contained in the SIM-card

■ User establishes a TLS session with the server, server is
authenticated.

■ Server generates a challenge. Causes the phone to receive it.

■ Phone shows a very short digest of the challenge.

■ Server sends that digest also to user’s computer, which shows it.

■ User compares two digests, if OK, authorizes phone to sign the
challenge.

■ Challenge is sent back, server thinks it’s talking to the user.

Parties and message flow

8 / 22

U C S D O P U

TLS HS

TLS HS

u
si
n
g
K̃

P

p
ro
te
ct
ed

S

get certS

U, P

S̃, U, P, r1

get certU get certU

S̃, P, r1‖r2 S̃, r1‖r2

CC2 := cc(r1‖r2)
CC1 := cc(r1‖r2)
CC1 S̃, CC2

CC1CC1

PINsigskU (r1‖r2)

sigskU (r1‖r2)

OK

skU

know certD

skS skD

VPN

Compare CC1 and CC2. Check S̃.

Modeling certificates

9 / 22

private fun cert/2.
reduc readcert(cert(x,y)) = (x,y).

■ When an honest party p constructs a public key k for himself, he
also executes out(net, cert(p,k)).

■ Adversary cannot construct certificates itself. Where does he get
certificates for his own keys?

let simpleca = ! in(net, pubkey); new n; out(net, cert(n,pubkey)).

Same with keys shared between phone and operator.

The process contains . . . | simpleca | . . .

Useful trick: procedures / functions

10 / 22

Function implementation
private free f in

let f =

in(f in, (f out,arg));

......

out(f out, result).

Function call:
...

new f out;

out(f in, (f out, arg));

in(f out, result);

...

The Process contains:
process ...| !f | ...

Abstracting TLS handshakes

11 / 22

■ Assume TLS is secure. Other people have analysed it.

■ Goal of TLS — creation of a secure channel.

◆ Identifies the server.

■ Write a “function” that

◆ gets inputs from two places

◆ constructs two new channels — client2server and server2client
and sends them back to both places.

◆ Verifies the identities, as necessary.

TLS handshaking process

12 / 22

private free tlsmatch.
let tlsmatcher =

in(tlsmatch, TLSClient(username, servername, cl back));
in(tlsmatch, TLSServer(servercert, serversk, sr back));
let (=servername,serverpk) = readcert(servercert) in
if pke(serversk) = serverpk then
new cltosr; new srtocl;
out(cl back, (cltosr,srtocl));
out(sr back, (username, cltosr,srtocl)).

The process contains . . . | !tlsmatcher | . . .

What is wrong?

Handshake with the adversary

13 / 22

■ Adversary should be able to write to tlsmatch.

◆ But not read!

■ Add to the process:

. . . | (! in(net,x); out(tlsmatch, x)) | . . .

Modeling collisions in the control code

14 / 22

■ Given some x, it is easy to find y, such that CC(x) = CC(y).

◆ Even if the format of y is restricted.

■ In our application, the challenge x = (x1, x2) is a pair.

◆ x1 is chosen by the server we’re protecting. x2 might be
adversarially chosen.

■ We introduce a function csc/2, such that for each y and each code
z, we have CC((y, csc(z, y))) = z.

Modeling collisions in the control code

15 / 22

fun CCode/1.
fun ccodesuffixcoll/2.

equation CCode((x,ccodesuffixcoll(z,x))) = z.

■ Support for equational theories is not a strong part of ProVerif.

■ The equations must be convergent.

Performing security-sensitive operations

16 / 22

■ Mobile-ID protocol protects the server — allows to identify clients.

■ We verify the security of the protocol by letting the server

◆ send a secret over the agreed TLS channel;

◆ perform an end-event

at the end of the protocol.

■ How to model that the user is an honest one?

Modeling an honest user

17 / 22

■ We put the names of honest users onto a secret channel.

private free ServerOK.

let user = new username; (〈user actions〉 | !out(ServerOK, username)).

let server = . . . ! . . . let username = . . . in
. . . in(ServerOK, =username); 〈sensitive stuff 〉.

Model of Mobile-ID

18 / 22

■ Many users, some dishonest

■ Many servers, some dishonest

■ A single DigiDocService

■ A single Mobile Operator

See the implementation

What if DDS is dishonest?

19 / 22

■ Make DDS’s secrets available to the adversary.

◆ May delete DDS’s process.

See the implementation.

Other properties: non-interference

20 / 22

■ Let P (~x) be a process depending on variables ~x.

■ Informally, P does not preserve secrecy of ~x, if

◆ for some ~M , ~N

◆ some attacker can observe the difference in behaviour of P (~M)

and P (~N).

■ e.g. P (x, y) ≡ new k; out(c, ({x}
k
, {y}

k
)) does not preserve the

secrecy of (x, y).

■ Indeed, the outputs made by P (M,M) and P (M,N) look
different.

■ Non-interference should be used if the set where the secrets come
from is small.

■ example: proverif/examples/pi/noninterf/piyahalom

Global synchronization — phases

21 / 22

■ ProVerif’s process definition allows the construct

phase n;P

where n is an integer.

■ P executes after the time point n has been reached. The
commands preceeding phase n execute before that point.

■ Some applications, e.g. voting, have such synchronization points.

Observational equivalence

22 / 22

■ ProVerif’s messages may contain the construct

choice[M1,M2]

■ This defines two processes:

◆ One, where all choice-constructs are replaced with their left
arguments.

◆ Another, where all choice-constructs are replaced with their
right arguments.

■ ProVerif tries to find whether some attacker can observe the
difference in behaviour of these two processes.

■ example: proverif/examples/pi/choice/pivote

■ A form of offline guessing attack

	ProVerif's input language
	A process
	Translation to Horn clauses
	Protocol specification
	Demo…
	Analysis: Estonian Mobile-ID identification
	Parties and message flow
	Modeling certificates
	Useful trick: procedures / functions
	Abstracting TLS handshakes
	TLS handshaking process
	Handshake with the adversary
	Modeling collisions in the control code
	Modeling collisions in the control code
	Performing security-sensitive operations
	Modeling an honest user
	Model of Mobile-ID
	What if DDS is dishonest?
	Other properties: non-interference
	Global synchronization — phases
	Observational equivalence

