Let G be a finite cyclic group and g € G one of its genera-
tors. Let |G| = m.

Let h € G. Then there exists a unique z € {0,...,m — 1},
such that g* = h.

This z is the (discrete) logarithm of A to the base g. Denote
z = log, h.
If g 1s clear from the context then we do not mention it:

log h 1s the discrete logarithm of A.

We can also define log, if g is not a generator of G, but
then log, 1s a partial function.



A particular instance: G = Z; for p € "
e Operation — multiplication.
Supposedly discrete logarithm 1s hard for this instance.
e if p is a randomly generated prime of sufficient length.

In the following, if we speak about a group GG, we assume
that multiplication, taking inverses and finding the unit

element are simple operations.



Example: Z7;. A generator of 1t is 2.

1 01 2 3 45 6 7 8 9 10 11
2%»modl13|1 2 4 8 3 6 12 11 9 5 10 7

Inverting this table gives us

h |1 2 3 45 6 7 8 9 10 11 12| €7,

log,h |0 1 4 2 9 5 11 3 8 10 7 6| €4



On the other hand, 3 i1s not a generator of Zi;.

1 0O 1 2 3 4 5 6 7 8 9 10 11
Fmod13|1 3 9 1 3 9 1 3 9 1 3 9

Hence log; 1 = 0, log; 3 = 1 and log; 9 = 2. The function
logs 1s undefined for other values.

Exercise. Give an example of a (family of) cyclic group(s)
where finding the discrete logarithms 1s an easy problem.



Hybrid usage of asymmetric and symmetric cryptosystems
to encrypt a plaintext z:

Let a symmetric cryptosystem be fixed. It may be a block
cipher with a fixed mode of operation.

1. Generate a new key k; of the symmetric cryptosystem.
2. Let y = B (2).

/) __ riasymm
3. Let k' = B} > (ks).

4. The cryptotext is (K, y).



In a bit more general terms:

If A wants to send a message =z to B then

e A and B somehow agree on the key k, for the symmet-
ric cryptosystem.

— The eavesdropper must not learn k;.

o A sends to B the message B (z).



Using an asymmetric cryptosystem, the agreement on k;
1s achieved with the following steps:

e B generates a new asymmetric keypair (kpup, ksec) and
sends kpyp to A.

o A generates k, and sends k' = B, " (k;) to B.

kpu

o B decrypts k, = D> (K').



Diffie-Hellman key agreement protocol:

e Let a cyclic group G and its generator g be fixed. Let
G| =m.
— They may be fixed globally, or be chosen at each
run of the protocol.

e A randomly chooses a € {0,...,m — 1}. B randomly
chooses b € {0,...,m — 1}.

e A sends g° to B. B sends ¢° to A.
e Both A and B compute ky = g%°.
— A computes (g°)?. B computes (g%)°.

e A hash of kq 1s taken as the key k;.

— kg 1s distributed differently than the keys for typical
symmetric cryptosystems.



The adversary sees (the description of) G, g, ¢* and ¢°.
The adversary wants to compute g.

This problem is the Diffie-Hellman problem.

It 1s no harder than discrete logarithm.

It 1s also presumed to be hard for Z;.



Example: let G = Z3;. Let g = 2.
Let A generate a = 7. Let B generate b = 4.

Then A sends to B g* = 2” = 11 (mod 13). And B sends
to A g° = 2* = 3 (mod 13).
A computes 3" = 729 = 3 (mod 13). And B computes
114 = 14641 = 3 (mod 13).

The adversary only sees 11 and 4 and has to solve the
Diffie-Hellman problem.



ElGamal public key cryptosystem:
Let a cyclic group G, |G| = m and its generator g be fixed.

e Key generation: randomly choose a € {0,...,m — 1}.
Let h = g°.
— Public key: h. Secret key: a.

x If G and g are not global, then they are part of
the public (and secret) key.

e Set of possible plaintexts: G.
e Encryption of z € G: randomly generate r € {0,...,m — 1}.

B(z,r) = (¢, - 1)

e Decryption:
D,(c1,¢c3) =¢co - c{®



Decryption works:

We had EBy(z,7) =(9",z-h") and g* = h.

D,g",z-h)=z-h-(¢") *=z-h"-(g*) "=z-h' ==



Example. Let G = Z], and g = 2.
Let the secret key be 13. The public key i1s then 3.

Let the message be 8. To encrypt, we generate r € {0,...,17}.
Let r be 10.

The cryptotext is (¢", zh") = (29,8 - 31%) = (17, 14).

To decrypt we compute ¢? = 17" = 16. We invert it and
obtain ¢; * = 6. The plaintext is ¢, - ¢;* = 14 - 6 = 8.



If we can solve the Diffie-Hellman problem then we can
break ElGamal cryptosystem.

Let cyclic G, m = |G| and generator g be fixed. Let h € G
be an ElGamal public key.

We are given a ciphertext (c;,c2) = (g7, z-h") where r and
z are unknown. We want to find z.

We solve the DH problem instance (G, g,c1,h). Here ¢; =
g" and h = g*. We obtain y = g% = h".

We findz =zh"-h™"=c, -y .



If we can break ElGamal cryptosystem then we can solve
the Diffie-Hellman problem.

Let the problem instance (G, g, g’, g") need solving, where
g’ = g% and g" = ¢° but a and b are unknown to us.

Let ElGamal cryptosystem use the same G and g.

Let the public key be (¢g”) ' and the message be (g’,1). We
break the system and find the plaintext z satisfying

(9',1) = (g% z-(97°)%) = (g%, z-g~%)

hence £ = g%’ is the solution to the Diffie-Hellman problem.



Assume that ElGamal cryptosystem is used to create se-
veral different ciphertexts using the same key.

What do we have to keep in mind when choosing 77
Can we reuse a random 77

Given (g",z1h") and (g", z2h") we can find z,/z,. Hence a
r should not be reused.



Property ElGamal RSA

Encryption two modular expo- | one modular ex-

complexity nentiations ponentiation (with
small modulus)

Decryption one modular expo- | one modular expo-

complexity nentiation nentiation

Randomized? yes no

Message expan- | twice none (i.e. once)

sion

Genericity applicable to any | usable in a single

cyclic group

structure



Given a cyclic G with m = |G|, how do we verify that
g € G 1s a generator?

Assume that we can factor m: m = p7* - - - p.*.
e If we cannot, pick some other G.

e To generate p € P, such that we can factor |Z;| = p—1,
we can let p be a strong prime.



The order of g must divide m.

If the order of g 1s not m then i1t must divide one of the
numbers m/p;, where 1 € {1,...,k}.

We verify whether ¢™/? = 1 for some ¢ € {1,...,k}. If
not, then g is a generator.



Given a cyclic G with m = |G| and a generator g € G, how
do we compute log, h for some h € G?

Simplest method — enumeration. Compute ¢°, g, ¢2,...
until g" = h for some n. Then log, h = n.

Time complexity: O(m). Space complexity: O(1).



Shanks’ baby-step giant-step algorithm (“meet-in-the-middle”):

Let I = [\/m]. Then log, h = ql + r for some

geq{0,...,l—1}and r € {0,...,l — 1}. Let
S={(rg™",7)|0<r <1}

be organized as a hash table with hg™" as the key.
If (1,7) € S then log, h = .

Otherwise compute g*, g%, g%, ... until (¢%,r) € S for some
g and r. Then log, h =ql + 7.

Time complexity: O(4/m). Space complexity: O(y/m).
Still infeasible if |G| > 2160,



Birthday paradox: let there be 23 random people in the
same room. The probability that two of them have the
same birthday is more than 50%.

In general, let X be a set, | X| = n. Let z,...,zx be mu-
tually independent uniformly distributed random variables
over X. The probability that z4,...,z; are all different is

k 1 . k—1 k—1 .
n+1—1 . n — Z Vz€ER:1+zLe?
_ 1 - 2) <
1—=1 1=1 =1

k—1

H oiln — o 20" _ o k(k-1)/(2n)

If K > (1 + +/1+ 8nln2) then this probability is at most
1/2.



Pollards p-algorithm: partition the group G into three parts
G1,Go,Gs, such that membership tests for all parts are
easy. Let 1 € G,.

Define f : G — G by

gz, =€ Gy
f(w) — $2, T C GZ
hz, T € G3

Define f°(z) = z and f*(z) = f(f* (z)).



Let z € {0,...,m—1} be randomly chosen. Let z; = f*(g*).
There exist o; and 3;, such that z; = ¢g*hP:, where oy = 2,
,30 — 0 and

/

o, +1, z,€ Gy Gi, z;, € Gy
A1 — 20(1', T; C Gz ,Bi—l—l — < 2,32', T; C G2
o, z; € Gs Gi +1, z; € G3

(all computations are modulo m).



Suppose that we have found such 2 and 7, where 72 = 7 but
T, = z;. Then
gaih,@i — gaj hﬁj

meaning that

h:BJ_ﬁ’L — ga’l aj
Hence
a; — O
log, h = 2 (mod m) .
B; — B;

If (B, — B;)~' (mod m) does not exist then we try again
with a different z.

Or...there definitely exists such & that k(8;,—8;) = o, — 5
(take k = log, h). If there are not too many such k-s then
we can try them all out.



Consider the values {z; };cn. If the values z; were mutually
independent uniformly distributed random variables then
two equal values exist among O(,/m) first ones with high
probability.

They are not independent, but for the purpose of our
analysis, we do not care.

To find logg h: COIIlpllte Lo, TL1,..., &g, A1, ... and ,80,,51, c e

until z; = z,; for = # 7. Then proceed as in the previous
slide.

Time complexity: O(,/m). Space complexity: O(1/m). (both
expected)



This gives the name p

Note: z; = z; 1mplies ;11 = T;44

Length of tail: O(4/m). Length of cycle: O(y/m).



Floyd’s cycle-finding algorithm: compute the sextuples

($i7ai7ﬁi)$2iaa2i7ﬁ2i)
(here 2 =0,1,2,...) until z; = z,;.

Here ($i+1; QAit1, Oit1, L2(i4+1), 042(1;+1),,52(7;+1)) can be compu-
ted from (z;, a;, Bi, T2:, A2, B2;), Which can then be discar-
ded.

T; = To; 18 reached while z; 1s making the first round on
the cycle. Hence 1 = O(4/m) at that moment.

Discrete logarithm’s algorithm’s time complexity: O(1/m)
(expected). Space complexity: O(1).



Example: let G = Zjy,. Let g = 2. Then g 1s a generator.
Indeed, m = |G| = 196 = 2% - 72. We have

196
2

22 =—land 27 =104 (mod 197) .

Let us find log, 133 1n Z3,-.

Partition: Gy = {1,...,65}, G, = {66,...,131}, G; =
{132,...,196).

Randomly pick z = 20. Then zy = 66, ag = 20, Gy = 0.



7 Ty | a; | B || Toi | 024 | Bo
0 142 | 20| 0O | 142 20 0
1171 20| 1 88 | 20 2
2 88 20| 2| 122 | 41 4
3 61 | 40 | 4 61 | 164 | 16
flence 40 — 164
log, 133 = T (mod 196)

1271 (mod 196) does not exist. We have to consider all k-s
satisfying the following congruence as possible values for
log, 133:

12k = —124 (mod 196) .



Dividing everything by gcd(12,196) = 4 gives us
3k =—-31=18 (mod 49)

[.e. Kk =6 (mod 49). The possible values for £ modulo 196
are 6, 55, 104 and 153. We try all of them:

2°=64 (mod 197) 2'* =133 (mod 197)
2°°> =89 (mod 197) 2™ =108 (mod 197) .

Hence log, 133 = 104 1n Zi,,.



Suppose that we know the factorization of |G| = m: let
m = p;'---p;*. Pohlig-Hellman algorithm lets us to re-
duce the computation of discrete logarithms in G to the
computation of discrete logarithms in groups of order p;.

Let g be a generator of G and let us look for log  A.
For each 72 € {1,...,k} define




g; generates of subgroup of G of order p;* and h; belongs
to that subgroup.

Let z; = log, h;. Then =z = log, h satisfies the system of
congruences

{z==2; (mod p;*)}1cick

which has a unique solution modulo m (use chinese re-
mainder theorem to find it).



Indeed, for all z € {1,...,k},
—ZH\My mM;\—T 3, My —Z —(1 fz Ty —T;
(g h) z:(g z) h™ =g, hi:gi(p—l_ )hi:gi h, =1

for some [ € Z.

Hence the order of ¢g~*h divides m,; for all 2. Then it also
divides gcd(my, ..., mg) = 1. Hence the order of g~ *h is 1,
1.e. g *h =1 and g* = h.

We have reduced the finding of discrete logarithms in G
to the finding of discrete logarithms in the subgroups of G

whose orders are prime powers.



Assume now that |G| = p° for some p € P. We want to find
log, h in G where g is a generator of G.

Denote z = log, h. Then £ = zo+T1p+ 0%+ - +Te_1p° "
for some zg,...,Z._1 € {0,...,p — 1}. Our task is to find
these z;.

e—1 e—1

We are going to have g® = h. Then also g* % = AP . But

e—1 e—1 —1

p° 'z = p* oo+t (21 +pTat. . AP T 1) = p° 'z (mod p°)

—1 —1
%o — hP°" " Hence

zo can be found be solving a discrete logarithm in the

As gP" = 1, the value z, must satisfy g?

subgroup generated by ¢g?° . Its order is p.



Assume that we have already found zo,...,z;_;. To find
z,; we note that we must have

e—1

gmjp]+_|_$e_1p — hg_mo_mlp_..._mj_lpj—l

Denote the right hand side by h;. Then we must also have

mjpe_l+$j+1pe+---+a3e—1p2e_j_2 . pe_j_l
g hj

Here the left hand side equals g"’"jpe_l. We find z; from the
equation (g7 )% = h?eﬂ_l



Example: let G = Z%,,s;. Then |G| = 64152 = 2% .3°.11.
Let g = 5. Then g is a generator of G. Indeed,

64152

2 = 64152 (mod 64153)

64152

5
5 s = 58563 (mod 64153)
5

64152

it =57412 (mod 64153)

Let us find log, 43210 in G.



Reduce finding that discrete logarithm to finding discrete
logarithms modulo prime powers:

64152 64152
= 88 =

64152
36 11

mq = 23

= 8019 my =

g1 = 5% = 6899 g, = 5% = 45332 g5 = 5°°% = 57412
h, = 43210%°"° = 5325  h, = 43210°% = 60946
hs = 43210°%% = 37326
(all powers modulo 64153).



We must find z; = log, h; = loggggg 5325 in G. We know
that this logarithm must belong to {0,...,7}. By trying
all possibilities we find that z; = 6.

We must find z3 = log,, hs = loggr4;, 37326. We know that
this logarithm must belong to {0,...,10}. By trying all
possibilities we find that z3 = 9.

We must find z; = log,, ho = logygs3, 60946. We know that
this logarithm must belong to {0,...,3° — 1}. We reduce
finding this logarithm to finding logarithms in the group
of three elements.



We have

To = Yo + 3Y1 + Y2 + 27ys + 81y, + 243ys,

where y; € {0,1,2}.

We find v, from g5 °% = h2%. Le.
58563Y° = (45332°*°)% = (ga*%)% = h2* = 60946°*° = 5589

By trying all three possibilities we find y, = 2.
In the following we need g, © = 4533271 = 29774 (mod 64153).



As next, we have g; %' = (hag, %)%, Le.
58563Yt = 45332%*°¥1 = (60946 - 453327 %)% = 5589

and Y1 = 2.

Then we have g5°%* = (hog, (2+3'2))27. Le.
58563Y> = (60946 - 453327°%)%" = 58563

and Yo = 1.

Then we have g5 % = (hog, 273%9)9. Le.

58563Y = (60946 - 453327 '7)° = 5589

and ys3 = 2.



Then we have g2*3¥% = (hyg, P132191272))3 1e

58563% = (60946 - 453327 "1)° = 58563

and Yo = 1.

Finally, g3** = h,g, ZT32H9727248) 1

58563Y5 — 60946 - 453327 1°? — 5589

and Ys = 2.
Thus z, = > ._, ¥:3* = 638.



We have the system of congruences

r=z; (mod p5') r=6 (mod 2°)
r=1z, (mod ps?) or ¢ =638 (mod 3°)
r=z3 (mod p5®) =9 (mod 11)

Using the chinese remainder theorem we find £ = 58958.
This 1s the discrete logarithm of 43210 to the base 5 in

*
Z64153 .



