
Ali
e wants to a

ess some resour
es 
ontrolled by Bob.Bob is willing to provide them to Ali
e, but not to everyo-ne.Ali
e has to 
onvin
e Bob that she really is Ali
e.How?This is the identi�
ation problem.



Passwords � the simplest s
heme.Ali
e and Bob have agreed on a 
ommon bit-string M .Ali
e sends M to Bob. Bob veri�es that it really re
eivedM and grants a

ess to Ali
e.



Problems:� An eavesdropper may learn M and impersonate Ali
eafterwards.� Bob has to storeM somewhere. If Bob's 
omputer gets
ompromised then M has leaked.� Ali
e may not use M to identify herself to Charlie.� Be
ause Bob 
ould impersonate her.� And if Bob's 
omputer is 
ompromised, then theatta
ker 
an impersonate her also to Charlie.� If M is human-memorable then it typi
ally has lowentropy.



To prevent the leakage ofM when Bob's 
omputer is 
omp-romised, Bob only stores h(M), where h is a one-way fun
-tion.The low entropy of M still allows it to be brute-for
ed.If Bob has a database of h(M)-s for many di�erent usersthen 
ompromising him is espe
ially attra
tive.To redu
e attra
tiveness, Bob stores not h(M), but(R;h(R jjM)) for a random string R.� di�erent R-s for di�erent users.



IfM has high entropy, it 
annot be memorable to humans.It may be stored on a smart-
ard instead.This smart-
ard may require a PIN to a
tivate. It may lo
kafter a 
ouple of false PINs.



If Ali
e always sends the same M to Bob then the eaves-dropper 
an impersonate her.Use one-time passwords or randomization.The randomness has to 
ome from Bob's side.Challenge-response proto
ol:� Bob generates a 
hallenge x and sends it to Ali
e.� Ali
e responds by 
omputing something from x andM , and sending it to Bob.� Bob veri�es that the message sent by Ali
e was really
omputed from x and M in the pres
ribed way.



For example, let E be the en
ryption fun
tion of somesymmetri
 
ryptosystem.� Bob generates a bit-string x and sends it to Ali
e. Also
omputes yB = EM(x).� Ali
e 
omputes yA = EM(x) and sends it to Bob.� Bob veri�es that yA = yB.Problems:� Ali
e 
annot use M to identify herself to Charlie.� The atta
ker impersonating Bob 
an mount a 
hosen-plaintext atta
k against M .



Let E and D be the en
ryption and de
ryption fun
tionsof some asymmetri
 
ryptosystem.Let Ms be Ali
e's se
ret key and Mp Ali
e's publi
 key.� Bob generates a bit-string x, 
omputes y = EMp(x)and sends it to Ali
e.� Ali
e 
omputes x0 = DMs(y) and sends it to Bob.� Bob veri�es that x = x0.Good things:� Ali
e never reveals Ms. She merely proves her know-ledge of Ms.� Hen
e Ali
e 
an use Ms to identify herself to Charlie.



An atta
ker impersonating Bob 
an mount a 
hosen-
iphertextatta
k against Ms.In general, Bob (or someone else) is able to make Ali
e
ompute something that he was not able to 
ompute him-self.It would be ni
e if Bob only learned that Ali
e knows these
ret and not anything else.What does �does not learn anything else� mean?



Fiat-Shamir identi�
ation s
heme.� Key generation: Ali
e generates two large primes p, qand 
omputes n = pq. Ali
e generates a random s 2 Z�nand 
omputes v = s2 mod n.� Publi
 key: (n; v). Se
ret key: (n; s).� Proto
ol:Commitment Ali
e generates a random r 2 Znnf0g,
omputes x = r2 mod n, and sends x to Bob.Challenge Bob generates a random b 2 f0; 1g andsends it to Ali
e.Response Ali
e sends y = rsb mod n to Bob.Veri�
ation Bob a

epts if y2 = xvb.



If Ali
e knows s then she 
an always make Bob a

ept by
omputing y 
orre
tly.If the adversary 
an 
ompute s from (n; v) then he 
an alsofa
tor n. This is supposedly intra
table.How su

essfully 
an the adversary impersonate Ali
e wit-hout knowing s?The adversary 
annot respond 
orre
tly to both 
hallenges(0 and 1).If he knows both r and rs then he 
an 
ompute s.



If the adversary 
an 
orre
tly guess b that Bob is going tosend then he may� Choose y 2 Znnf0g and 
ompute x = y2 � v�b mod n.Use that x as the 
ommitment.� y will then be the 
orre
t response.Hen
e the adversary 
an fool Bob only with probability50%.Exe
uting the proto
ol several times will exponentially di-minish that probability.



What does Bob (or an adversary) �learn� from an exe
utionof that proto
ol?Well, whatever. . .But the �new information� is 
ertainly upper-bounded by� Bob's random 
hoi
es;� the tra
e (x; b; y) of the proto
ol.



Here (x; b; y) is generated a

ording to a distribution where� x is a random quadrati
 residue modulo n;� b is a random bit;� Its distribution may depend on x.� I.e. Bob may be a
tively trying to determine Ali
e'sse
ret s.� y is a square root of xvb.� y = rsb is a random element of Znnf0g be
ause ris a random element of Znnf0g and s is invertiblein Zn.



Bob (or anyone else) 
an sample this distribution himself:� Generate a random bit b� by tossing a fair 
oin.� Generate a random y 2 Znnf0g.� Set x = y2v�b� mod n.� Generate the random bit b a

ording to the distribu-tion that depends on x.� If b 6= b� then start over.



We see that all �new information� that Bob 
ould obtainby running the proto
ol 
ould have been generated by Bobhimself, without the help of Ali
e.Hen
e there really was no new information (beside the fa
tthat Ali
e knows the se
ret key).We say that this proto
ol has the property of zero-knowledge(nullteadmus).



Let G be a 
y
li
 group where taking dis
rete logarithmsis hard, let g be a generator of G and m = jGj. Let Ali
egenerate a 2 Zm and publish h = ga.Ali
e 
an prove her knowledge of a to Bob as follows:Commitment Ali
e generates a random r 2 Zm, 
ompu-tes x = gr and sends x to Bob.Challenge Bob generates a random b 2 f0; 1g and sendsit to Ali
e.Response Ali
e sends y = r + ab to Bob.Veri�
ation Bob a

epts if gy = xhb.Exer
ise. Prove that the proto
ol works, is se
ure, andhas the zero-knowledge property.



Several rounds of the proto
ol have to be run, su
h thatthe probability of Ali
e not 
heating is high enough.They may be run one after another or in parallel.Or 
an they?Exer
ise. What is the di�eren
e between running roundsone after another and running them in parallel?



Re
all the simulation (for a single round):� Generate b� 2 f0; 1g by tossing a fair 
oin.� . . .� Obtain b 2 f0; 1g; its distribution depends on thingsthat happened above.� If b 6= b� then start over.Probability of su

eeding (not starting over): 1=2.To simulate k rounds, we have to do the work above app-roximately 2k times.



For k rounds the simulation would be� Generate b�1; : : : ; b�k 2 f0; 1g by tossing fair 
oins.� . . .� Obtain b1; : : : ; bk 2 f0; 1g; their distribution dependson things that happened above.� If 9i : bi 6= b�i then start over.Probability of su

eeding: 1=2k.Exponentially small in k.To simulate k rounds, we have to do the work above app-roximately 2k times.



Consider now the 
ase where the Prover� knows that a 
ertain 
laim holds;� knows its proof;� wants to 
onvin
e Veri�er that the 
laim holds;� does not want to reveal anything else.For example, Prover wants to 
onvin
e Veri�er that (g; h; y1; y2)is a Di�e-Hellman tuple (here g; h; y1; y2 2 G for somegroup G, m = jGj).I.e. 9x 2 Zm (whi
h Prover knows) su
h that y1 = gx andy2 = hx.



Re
all our �voting s
heme�:� There are a number of voters V1; : : : ; Vk.� The voter Vi has a 
hoi
e ei 2 f0; 1g.� The Tallier has an ElGamal publi
 key h. He knows a,su
h that ga = h.� The voter Vi generates a random ri and publishes (gri ; geihri).� The votes are multiplied, resulting in (gR; gEhR) =(
1; 
2), where E =Pi ei.� The Tallier de
rypts, and publishes gE. Brute-for
ingreveals E.Tallier a
ted 
orre
tly if (g; 
1; h; 
2g�E) is a Di�e-Hellmantuple. The 
ommon exponent is a.



Prover and Veri�er know G, m, (g; h; y1; y2).Prover knows x, su
h that gx = y1, hx = y2.Commitment Prover randomly pi
ks r 2 Zm and sendsA = gr and B = hr to Veri�er.Challenge Veri�er sends a random bit b 2 f0; 1g to Pro-ver.Response Prover sends s = (r + bx) mod m to Veri�er.Veri�
ation Veri�er a

epts if A = gsy�b1 and B = hsy�b2 .Exer
ise. Prove that the proto
ol works, is se
ure, andhas the zero-knowledge property.



The proto
ol may be understood as follows:The Prover made the following 
laims:0. A andB are 
onstru
ted 
orre
tly (i.e. logg A = loghB).1. If A and B are 
onstru
ted 
orre
tly then logg y1 =logh y2.� y1 = gs�logg A and y2 = hs�loghB = hs�logg A.The Veri�er will verify one of these 
laims, but the Proverdoes not know beforehand, whi
h one.



Let us play the following game. We both 
hoose a bit. Iftheir xor is 1 then you win, otherwise I win.� So, what is your bit?� . . .� Tough lu
k, so is mine.This seems to be unfair. . .



� So, what is your bit?� My bit? It is in that sealed envelope. What is yours?� My bit is. . .� OK, you may open the envelope now.This is fair.The envelope was an example of bit 
ommitment (bitikin-nistus).



A bit 
ommitment is a 
ryptographi
 primitive with threeoperations:� Key generation;� Committing � takes the se
ret key and the bit to be
ommited, and produ
es the 
ommitment and the re-vealing information.� Verifying � takes the publi
 key, 
ommitment, the bitthat was allegedly 
ommited, and revealing informa-tion, and either a

epts or reje
ts.



A bit 
ommitment must have two properties:Con
ealing The publi
 key and 
ommitment should notreveal the 
ommitted bit.Binding It must be impossible to produ
e a 
ommitmentthat 
an be opened both ways.



Histori
ally, en
ryption has been used for 
ommitment.� To 
ommit, generate a new key K and a random stringR.� Commitment of b is EK(f(b;R)) for some f that 
om-bines b and R.� Revealing information is (K;R).� Veri�
ation: re
ompute EK(f(b;R)).Con
ealing is obvious. Binding depends on E and f .



Bit-
ommitment based on quadrati
 residuosity:Key generation Let p; q 2 P, n = pq, m 2 Zn, su
h that�mp � = �mq � = �1. (n;m) is the publi
 key.� Then �mn� = 1, but m is a quadrati
 non-residuemodulo n.Committing Choose a random x 2 Zn. The 
ommitmentis 
 = mbx2 mod n. The revealing information is x.Verifying Che
k whether 
 � mbx2 (mod n).



The s
heme is un
onditionally binding be
ause the 
om-mitments of 0 are quadrati
 residues, and the 
ommitmentsof 1 quadrati
 non-residues.It is believed that distinguishing quadrati
 residues fromnon-residues is hard. Under this assumption, the s
heme is
on
ealing.Exer
ise. n and m are generated by the Prover. Whathappens if the Prover lets m to be a quadrati
 residue?



Another one:Key generation Let p; q 2 P, n = pq. Committer mustnot know p and q (re
ipient may know them). Let mbe a quadrati
 residue modulo n. (n;m) is the publi
key.Committing Choose a random x 2 Zn. The 
ommitmentis 
 = mbx2 mod n. The revealing information is x.Verifying Che
k whether 
 � mbx2 (mod n).



Con
ealing is un
onditional � the possible 
ommitmentsare the same for 0 and 1.If a 
ommitter 
ould open 
 as both 0 and 1, then he knowsx0 and x1, su
h that x20 = 
 = mx21 :Then m = x21x20 and pm = x1=x0. I.e. the 
ommitter 
an
ompute square roots modulo n. Hen
e he 
an also fa
torn.



We have seen two s
hemes.One was 
omputationally 
on
ealing, but un
onditionallybinding.The other was un
ondtionally 
on
ealing, but only 
om-putationally binding.Exer
ise. Are there s
hemes where both 
on
ealing andhiding are un
onditional?



Commitments 
an be used to give zero-knowledge proofsfor any problems in NP.Example: graph 3-
olourability (NP-
omplete).Given a graph (V;E). The Prover knows how to 
olourits verti
es with three 
olours, su
h that no edge has bothendpoints of the same 
olour.Let ' : V ! f1; 2; 3g be the 
olouring.The Prover wishes to 
ommuni
ate the 3-
olourability of(V;E) to the Veri�er, without giving away '.



Let V = fv1; : : : ; vng and E � V � V . The prover� Chooses a random permutation � of the set f1; 2; 3g;� Lets 
i be a 
ommitment to �('(vi)) (1 6 i 6 n);� To 
ommit to a several bits long value, 
ommit toea
h bit separately.� Sends (v1; 
1); : : : ; (vn; 
n) to the Veri�er.(The Commitment)



The Veri�er pi
ks an edge (vi; vj) and sends it to the Prover.(The Challenge)The Prover opens the 
ommitments 
i and 
j. (The Res-ponse)The Veri�er 
he
ks that the 
olours for vi and vj are di�e-rent.



If the graph (V;E) is not 3-
olourable then there exists atleast one edge having the endpoints of the same 
olour.An honest Veri�er �nds it with the probability > 1=m.The probability that a Veri�er is fooled after k rounds isat most �1� 1m�k.If we take k = m2 (polynomial in the size of the graph)then this probability is about e�m.Be
ause limm!1 �1� 1m�m = 1=e.Hen
e the proto
ol is se
ure.It is obvious that the proto
ol works.



How to 
onstru
t trans
ripts without the Prover?First, sele
t the 
hallenge (vi; vj).Let 
i and 
j be 
ommitments to di�erent 
olours. Let the
ommitted 
olours of other verti
es be random.Note that the resulting distribution is not the same as thereal one (using the Prover), but it is indistinguishable fromthat.This is an example of 
omputational zero-knowledge. If thedistributions are equal then we have perfe
t zero-knowledge.



Example: Graph isomorphism in perfe
t zero knowledge.Given two graphs G0 = (V0; E0) and G1 = (V1; E1). TheProver knows a graph isomorphism ' : V0 �! V1.The Prover wants to 
onvin
e the Veri�er that G0 �= G1.



Commitment. Prover generates G01 = (V1; E 01) as a ran-dom isomorphi
 
opy of G2 and sends it to the Veri�er.I.e. The Prover sele
ts a random permutation  of V1 andtakes E 01 = f( (u);  (v)) j (u; v) 2 E1g :Challenge. The Veri�er sends a random bit b 2 f0; 1g tothe Prover.Response. If b = 1 then Prover returns f =  . If b = 0then Prover returns f =  Æ '.Veri�
ation. The Veri�er 
he
ks that f is an isomorphismfrom Gb to G01.



Simulation (for an honest Veri�er).First generate b 2 f0; 1g.Then generate G01 as a random isomorphi
 
opy of Gb.For a dishonest veri�er, generate b� 2 f0; 1g whose distri-bution may depend on Gb. If b 6= b� then start over.



Parallel 
omposition of k sessions:1. Prover sends the 
ommitments C1; : : : ; Ck;2. Veri�er replies with the 
hallenges b1; : : : ; bk;3. Prover sends the responses r1; : : : ; rk;4. Veri�er 
he
ks that Ci; bi; ri are 
orre
tly related.Problem: bi may depend on Cj for j > i and the simulationis no longer expe
ted polynomial-time.



How about:1. Veri�er sends the 
hallenges b1; : : : ; bk;2. Prover sends the 
ommitments C1; : : : ; Ck;3. Prover sends the responses r1; : : : ; rk;4. Veri�er 
he
ks that Ci; bi; ri are 
orre
tly related.Well. . .That does not prove anything anymore. . .



How about this:1. Veri�er sends the bit-
ommitments 
1; : : : ; 
k to the
hallenges;2. Prover sends the 
ommitments C1; : : : ; Ck;3. Veri�er opens 
1; : : : ; 
k; Prover learns b1; : : : ; bk;4. Prover sends the responses r1; : : : ; rk;5. Veri�er 
he
ks that Ci; bi; ri are 
orre
tly related.Here Ci may depend on 
i. . . but this dependen
e shouldnot help in 
hoosing the 
ommitment. . .



A bit-
ommitment s
heme, 
onsisting of key-generation,
ommitment and opening fun
tionalities is non-obliviousif the 
ommitter must know the 
ommitted value at thetime of 
ommitment.I.e. it 
annot pass a bit-string as a 
ommitment if it doesnot know how to open it.A 
ommitment s
heme 
an be made non-oblivious by let-ting the 
ommitter prove in ZK that it knows how to open.But in our appli
ation we have to run many of these proofsin parallel. . . a vi
ious 
ir
le. . .Lu
kily, a notion weaker than ZK su�
es. This notion isparallelly 
omposable.



A zero-knowledge proof is a proto
ol.It is intera
tive.Can we make it non-intera
tive?I.e. the prover sends a single message to the veri�er andthe veri�er is 
onvin
ed (or not).



A 
ommon way is:� Let h : f0; 1g� ! f0; 1gk be a �se
ure� hash fun
tion.� The prover generates 
ommitments C1; : : : ; Ck;� let b1 � � � bk = h(C1; C2; : : : ; Ck);� The prover generates responses ri for Ci and 
hallengebi.The whole proof is ((C1; r1); : : : ; (Ck; rk)).The veri�er regenerates b1; : : : ; bk and veri�es all k rounds.k must be long enough, su
h that regenerating C1; : : : ; Ckuntil we get right 
hallenges is infeasible.h must �look like a random fun
tion�.


