How to formalize the security of cryptographic primitives
against certain kinds of attacks?

For concreteness, consider asymmetric encryption against
chosen-plaintext attacks (CPA).

e A key pair (sk, pk) is generated, using the key gener-
ation algorithm X.

e pk is given to the adversary A.

e A message is encrypted. The cryptotext is given to
the adversary.

e The adversary tries to deduce something about the
message.



Success probability of the adversary A attacking a cryp-
tosystem II = (XK, €, D) should be small:

(sk, pk) « XK() ]

X has something | M < D
to do with M. .. C + &, (M)

X + A(pk,C)

Pr

Here ¢, 1s the success probability of an adversary that “does
not really try to find the correct X”.

How small should ¢y be?

¢ 1s the advantage of A. It characterizes how much C helps
to say something about M.



“something to do with” — let there be a function
f:{0,1}* — {0, 1}* whose value A tries to find.

(sk, pk)  K()
Pr| X = f(M) M <epte

X + A(pk,C)




We get ¢¢ by running A “without C”.

Pr

(sk, pk) « XK() ]
M+ D <
C +— Ep(M)
X + A(pk,C) |
' (sk, Pk)  K()
M +— D
Pr| X=f(M)| M «D
C + Ep(M)
_ X « A(pk,C)




Let Expsy "°(A) denote the following random variable (called

experiment):
(sk, pk) « XK()
My +— D
M; D
C + Epr(M)
X + A(pk, C)
if X = f(M,) then 1 else O .

The inequality on the previous slide is then

Pr[Expy "'(A) = 1] — Pr[Expy “°(A) =1] <€ .

Denote that difference by Advi ™ (A).



Let A provide D and f. It now works in two stages, A,
and A,. Expyy "°(A) is then

(sk, pk) « XK()

(D, s) «+ Ai(pk)

My +— D

M, +— D

C + Epr(M)

(f, X) < Aa(C, 5)

if X = f(M,) then 1 else O .

Here s 1s the “internal state” of A. Most probably it in-
cludes pk.



AdvEPA(A) = Pr[Expy WH(A) = 1]—Pr[Expy °(A) = 1]

We say that IT is (¢, €)-secure against CPA if Advg *(A) <
¢ for all adversaries A whose running time is at most ¢.

On running time: Assume that A 1s represented as a
sequence of instructions. Accessing the 2-th instruction of
that sequence is forbidden before the 2-th clock tick.

Exercise. What would happen if we allowed A to access
up to ©(2')-th instruction at the :-th clock tick?

Exercise. Show that € has to be probabilistic for II to
satisfy that security definition (for reasonable ¢ and ¢).



This kind of definition is called semantic security (of an en-
cryption system). There are several others (about) equiv-
alent to it.

All have the form “Adviy " (A) < ¢ for all A with running

time at most t”, where

AdvE*X(A) = Pr[Expy ' (A) = 1]—Pr[Expy " (A) = 1]

The def. on previous slide should be called “semantic se-
curity against CPA”.



Example: find-then-guess security against CPA.
Expp °(A) is

(sk, pk) < K()

(Mo, My, s) « Ai(pk)
C +— Epp(My)

b* +— A3(C, s)

return b*

I.e. A chooses two plaintexts, receives the encryption of

one of them, and tries to guess, which.



How do the definitions for security against CPA for sym-
metric cryptosystems look like?

The adversary should still be able to obtain encryptions
for chosen plaintexts.

Hence we give 1t the access to encryption functionality.
The adversary A will be an oracle (Turing) machine.

A oracle is something that takes queries and answers to
them. It may be randomized and have internal state.

A may execute instructions of the form M; := query(Ms).
The contents of the cell M, is then given to the oracle and
the return value written to the cell Mj.

A with access to the oracle O(-) is denoted A%,



Experiment ExpEFtG’b(A) for a symmetric cryptosystem

IT:
k +— X()
(Mo, My, 5) = A7)
C +— Ex(My)
b* — ASY(C, s)
return b*
Access to the oracle is a resource (like running time). In

security definitions we may want to discriminate based on
1ts usage:

IT is (¢, q, 4, €)-FtG-secure against CPA if Adv: ¢ (A) < ¢
for all adversaries A whose running time 1s at most ¢ and
who make at most g queries to the oracle, totalling at most
1 bits.



Experiment Exp"°™°(A) (“left or right”):

k — X()
b* %‘ALR(-,-,k,b)()

return b*
where
LR(My, My, k,b) = if |My| = | M;| then Ex(M,) else error

(LR is randomized because € is)
Also an often-used definition. ..

Here the length of a query (Mg, M) is defined as |Mp|.



In a chosen-ciphertext attack the adversary also has access
to the decryption functionality.

Consider the following experiment Exp}~ " (A):

k +— X()
b* (_ALR(-,-,k,b),Q)(-)()

return b*

Exercise. Why cannot the CCA-security of symmetric
cryptosystems be defined based on that experiment?



Actually, it can...

IT is (%, ge, le, G4, 144, €)-LoR-secure against CCA if
Adv5CCA(A) < ¢ for all adversaries A whose running time
1s at most £, who make at most g. queries to the first oracle
(at most u. bits total), at most gq queries to the second
oracle (at most pq bits total) and do not query the second
oracle with the bit-strings returned by the first.

We model a situation where the attacker can cause the
system to decrypt some, but not all ciphertexts.

To give a definition that 1s as strong as possible, we only
exclude ciphertexts whose decryption would immediately
break the security.



For FtG-security against CCA consider the following

experiment:

k +— XK()
(Mo,Ml,S) %.Afk()’@k()()
b* (_Ag:k(‘),j)k(’)(c’ s)

return b*

where A, may not invoke D (C).

We get two possible security definitions here, depending
on whether A, has access to Dg(-) or not.



e A, has access to D — security against adaptive CCA
— HEquivalent to LoR-security.

— Also called “midnight attack”, CCA2.

e A, does not have access to D — security against non-
adaptive CCA

— Also called “lunchtime attack”, CCAL.



For asymmetric cryptosystems consider the following ex-

periment:
(sk, pk) + XK()
(Mo, My, s) + A?S’“(')(pk)
C — E,(My)
b* A?Sk(')(C, s)
return b*

where A, may not invoke Dy (C).

Again, two definitions are possible, depending on A,’s ac-

cess to D.



A block cipher E with block length [ is a triple (X, &, D)
of algorithms.

e X () is a probabilistic key generation algorithm;

e &i(z) is a deterministic algorithm. For a fixed key k,
Ex(+) is a permutation of {0, 1}*.

e Di(-) is the inverse permutation of E(+).

What 1s a suitable security definition for 1t?



Let Perm' be the following probability distribution:
e its underlying set is the set of permutations of {0, 1}*;
e it 1s uniform.

If T + Perm' then we say that 7 is a random permutation
(over [-bit strings).

e “random” i1s not a property of a permutation, but rather
of 1ts choice.

We want Ex(-) (for k chosen according to K) to look like a

random permutation.

Exercise. How to “implement” a random permutation?



Let the experiment Expy " (A) be

k— K(); b* «— A%0): return b*
and the experiment Expy - " (A) be
7+ Perm’; b* « A™"): return b*
Let
AdvEFP(A) = Pr[Expy . (A) = 1]—Pr[Expy " °(A) = 1]

Block cipher F is a (t, g, €)-pseudorandom permutation if
Adv; Y (A) < e for all adversaries A of running time at

most ¢ and making at most g oracle queries.



A related notion is (pseudo)random function.

Let Rand"™" be the uniform probability distribution over
all functions from {0, 1}* to {0, 1}*.

Exercise. How to “implement” 1t?

Let Expy " (A) = Expg = " (A) and Expy " °(A) be
7+ Rand™% b* « A™0): return b*

Let

AdvEFF(A) = Pr[Expy - '(A) = 1]—Pr[Expy "~ °(A) = 1]

Block cipher E is a (t, q, €)-pseudorandom function if
Adv; Y (A) < € for all adversaries A of running time at
most ¢ and making at most g oracle queries.



A Dblock cipher is a pseudorandom function iff it is a pseu-
dorandom permutation.

Theorem. |Advy " (A) — Advy ™ (A)] < q(qg — 1)/2H?
where g 1s the number of oracle queries made by A.

Proof.

Adviy Y (A) — AdveF(A) =
Pr[Expl*(A) = 1] - Pr[Expy*(A) = 1
The responses to oracle queries in experiments for PRPs

and PRFs are the same, except that for PRPs, they all
must be different.

Among g queries, there are g(q¢ — 1)/2 query pairs. The
probability that a pair of different queries produces the
same answer for PRF is 1/2".



Theorem. If a block cipher is a (%, g, €)-pseudorandom
permutation then it is also a (%, g, e+ Q( )) pseudorandom

function.

Theorem. If a block cipher is a (t,q, €)-pseudorandom
function then it is also a (¢,q,€ + Q(q_ )) pseudorandom

permutation.



Recall the counter mode of operation of block ciphers:

%4 IV +1 1V + 2 1V +3 1V +4
Ek Ek Ek Ek
Y Y Y Y
277D D 2z D D
Y Y Y Y Y
Yo Y1 Y2 Y3 Y4

We show that if £/ is a good pseudorandom function then

the resulting symmetric encryption system is secure agaist
CPA (in left-or-right sense).



Block cipher E = (K¥, &%, D).

Symmetric encryption system IT = (X', M, D) defined
by

o KT — ICE-
o &Xzy---x,), where z; € {0,1} is
— IV €5 {0,1}; yo := IV
— y; = E&Z(IV +1) @ z;

— return yo - - - Yn.
o @E = 82.

(Denote IT = XOR|E])



Theorem. If E is a (t, q, €)-pseudorandom function then
[T is a symmetric encryption system that is (¢/,q’, u', €’)-
LoR-secure against CPA, where



Let RO be the following oracle: on input z of length nl
generate y € {0, 1}("*V! and return it.

Define the experiment Expy " (A):
k— K"0); b* « A%V(); return b*
and Expp *(A):

b* — AROV)(); return b*

RO may be considered as a symmetric encryption system.
(KO returns a constant and D*° does not exist
(D is not necessary for talking about CPA))



Recall the experiment Expl °™*(A):

k — X()
b* %‘ALR(-,-,k,b)()

return b*

where
LR(My, My, k,b) = if |My| = | M;| then Ex(M,;) else error

Lemma. Advi"(A) = 0 for any adversary A.

Proof. The distribution of £*°(M) does not depend on M.
Hence the values returned by LR do not depend on b.



Let = = XOR[Rand"™]. I.e.
e X=() picks a random function f from {0, 1} to {0, 1};

o 8?(:1:1 c+Tp) = Yo - Yn Where Yo is random and y; =
f(yo+1) @ zi;

° @?:8?.

Lemma. For all adversaries A that make at most g oracle
queries with u bits in total,

PrlA%0)() = 1| f + Rand™Y — Pr[A®0)() = 1] < ...



The answers from RO(-) are completely random.

The answers from 8?() are also completely random, as
long as f i1s not invoked twice on the same argument.

There are up to g queries to 8?() Assume that the i-th
query is n; blocks long. Then n; > 0 and ) 7, n; < u/l.

Let IV4,...,IV, be independent, uniformly distributed
random variables over {0, 1}*. What is the probability that
some of the following numbers are equal?

IV1—|—1 IV1—|—2 IVl—I—nl
IV2—|—1 IV2—|—2 IV2—|—n2

IVy+1 IVy+2 - IV, +mn,



e When choosing IV, there are 0 possibilities (out of
2') to create a collision.

e When choosing [V ,, there are n; 4+ n, possibilities to

create a collision.

e When choosing IV3, there are < (ny + n3) 4+ (ng + n3)
possibilities to create a collision.

e When choosing IV, there are < Z;;ll (n; + ;) possi-
bilities to create a collision.

Summing ¢ = 1,...,q: there are < (¢ — 1) > %, n; possi-
bilities (out of 2') to create a collision.



Hence

Pr[A%0)() = 1| f « Rand™Y] — Pr[A®0)() = 1]

(g —1) zq:ln’i < (@g—1)u
oL S ool

(that’s what our lemma claimed).



Lemma. For any adversary A that makes at most g oracle
queries totalling u bits,

(g—1)u
ol-1.]

Proof. Construct the following algorithm B®():

Advz *(A) <

e Generate d € {0,1};
o Let b+ AG)();

— Whenever A makes an oracle query (M, M;), re-
turn O(Mjy).

e If d =0, return 1, else return 0.

We see that ‘B makes as many oracle queries as A, with the
same total length.



1 S-L0
- (1 — Pr[ExpE™""(4) =

1 s-Lo
> (1 — Pr{Expyg "(A) =

1
~(AdvEH(A) -

1
AdvirPH(A)) = SAdv

r[Exp SL°R°(A) = 0]—Pr[d = 1]-Pr[Expia™

1] + PI[EXPE%OR’l(A) =1])

s-LoR

~—
—

(A)



Lemma. For any b € {0,1} and any adversary A with
running time at most ¢, whose oracle queries total at most
1 bits there is an adversary B with running time at most
O(t) that makes at most /Il oracle queries and satisfies

AdviR(A) <. Lo- Adv T (B) + .



Proof. Given such A, let B°0) be

let Q = XOR|[O]

d €g {0, 1}

b+ ALECHA)()

if d =0 then 1 else 0

where
LR(M(), Ml,d) = if |M0| = |M1| then Q(Md) else error

The number of oracle queries made by B is u/l. The run-
ning time of B consists of the time to run A, to implement
the XOR-mode, and to generate and compare d.



Adv; Y (B) =
Pr[Expg" "' (B) = 1] — Pr[Expy " " (B) = 1] =

1
§(PI[EXP“EL°R’O(A) = 0] + Pr[Expy °"(A) = 1])—
1
5 (Pr[Expz™*°(4) = 0] + Pr[Exps **'(4) = 1]) =
1
§(AdVSﬁLOR(A) — AdvE™R(A)) .

Hence

g —1)u

AdVERR(A) < 2+ AdvERT(5) + (L21)




Theorem. If F is a (t, g, e)-pseudorandom function then
IT is a symmetric encryption system that is (¢/,¢q’, i/, €’)-
LoR-secure against CPA, where

L
O(1)
g =q
pw=q-l
—1
e =2.g+ 1

2l—2



What is an appropriate definition of security for message
authentication codes?

Consider an active adversary. It may obtain the tag of
certain messages of its choice. (chosen-message attack)

Adversary is successful if 1t can construct the tag of some
message that has not been MAC’ed before (existential forgery).



A MAC (X, sig, ver) is (t,q, 4, €)-secure against EF-CMA
if for all adversaries A whose running time is bounded by

t, and who make no more than g oracle queries totalling

no more than u bits,

very(M, o) = true and

A did not query M

Pr

k +— X()
(M, o) + A%90)()

<€

Security def. for digital signatures is similar, but A gets

the verification key, too.



Sometimes we do not just have a single cryptographic prim-
itive II, but an entire family of primitives {II; }ren.

This k 1s related to the security of the primitive. Larger &

means more security.

Example: various primitives based on number-theoretic
problems. k is the size of the moduli.

We want to talk about the rate at which security increases

1f we increase k.



Let the adversary A also take the parameter k.

Let there be some polynomial p, such that the running
time of A(k,...) is at most p(k).

Advy, (A(k,...)) is then also a function of k.
We want this function to be negligible:

1
Vg € Njz] 3k € N Vk > ko : Advy (A(k,...))(k) < OB



Alternatively, we may consider for each k the function
ex(t) = maxy Advy (A) where max is taken over all ad-

versaries with running time < ¢.

For each polynomial p we then demand the mapping

k— ex(p(k))

to be negligible.

Exercise. What is the difference between those two defi-

nitions?



