
How to formalize the se
urity of 
ryptographi
 primitivesagainst 
ertain kinds of atta
ks?For 
on
reteness, 
onsider asymmetri
 en
ryption against
hosen-plaintext atta
ks (CPA).� A key pair (sk ;pk ) is generated, using the key gener-ation algorithm K.� pk is given to the adversary A.� A message is en
rypted. The 
ryptotext is given tothe adversary.� The adversary tries to dedu
e something about themessage.



Su

ess probability of the adversary A atta
king a 
ryp-tosystem � = (K;E;D) should be small:

Pr
2666664 X has somethingto do with M . . .

(sk ;pk) K()M  DC  Epk (M)X  A(pk ; C)
3777775 6 "0 + "

Here "0 is the su

ess probability of an adversary that �doesnot really try to �nd the 
orre
t X�.How small should "0 be?" is the advantage of A. It 
hara
terizes how mu
h C helpsto say something about M .



�something to do with� � let there be a fun
tionf : f0; 1g� ! f0; 1g� whose value A tries to �nd.

Pr
2666664 X = f(M)

(sk ;pk) K()M  DC  Epk (M)X  A(pk ; C)
3777775 6 "0 + "



We get "0 by running A �without C�.

Pr
2666664 X = f(M)

(sk ;pk) K()M  DC  Epk(M)X  A(pk ; C)
3777775 6

Pr
2666666664 X = f(M 0)

(sk ;pk) K()M  DM 0  DC  Epk (M)X  A(pk ; C)
3777777775+ "



Let Exp
CPA;b� (A) denote the following random variable (
alledexperiment): (sk ;pk) K()M0  DM1  DC  Epk (M1)X  A(pk ; C)if X = f(Mb) then 1 else 0 .The inequality on the previous slide is thenPr[Exp

CPA;1� (A) = 1℄� Pr[Exp

CPA;0� (A) = 1℄ 6 " :Denote that di�eren
e by AdvCPA� (A).



Let A provide D and f . It now works in two stages, A1and A2. Exp

CPA;b� (A) is then(sk ;pk) K()(D; s) A1(pk)M0  DM1  DC  Epk (M1)(f;X) A2(C; s)if X = f(Mb) then 1 else 0 .Here s is the �internal state� of A. Most probably it in-
ludes pk .



AdvCPA� (A) = Pr[Exp

CPA;1� (A) = 1℄�Pr[Exp

CPA;0� (A) = 1℄We say that � is (t; ")-se
ure against CPA if AdvCPA� (A) 6" for all adversaries A whose running time is at most t.

On running time: Assume that A is represented as asequen
e of instru
tions. A

essing the i-th instru
tion ofthat sequen
e is forbidden before the i-th 
lo
k ti
k.Exer
ise. What would happen if we allowed A to a

essup to �(2i)-th instru
tion at the i-th 
lo
k ti
k?Exer
ise. Show that E has to be probabilisti
 for � tosatisfy that se
urity de�nition (for reasonable t and ").



This kind of de�nition is 
alled semanti
 se
urity (of an en-
ryption system). There are several others (about) equiv-alent to it.All have the form �AdvXXX� (A) 6 " for all A with runningtime at most t�, where
AdvXXX� (A) = Pr[Exp

XXX;1� (A) = 1℄�Pr[Exp

XXX;0� (A) = 1℄

The def. on previous slide should be 
alled �semanti
 se-
urity against CPA�.



Example: �nd-then-guess se
urity against CPA.

Exp

FtG;b� (A) is (sk ;pk ) K()(M0;M1; s) A1(pk)C  Epk (Mb)b�  A2(C; s)return b�I.e. A 
hooses two plaintexts, re
eives the en
ryption ofone of them, and tries to guess, whi
h.



How do the de�nitions for se
urity against CPA for sym-metri
 
ryptosystems look like?The adversary should still be able to obtain en
ryptionsfor 
hosen plaintexts.Hen
e we give it the a

ess to en
ryption fun
tionality.The adversary A will be an ora
le (Turing) ma
hine.A ora
le is something that takes queries and answers tothem. It may be randomized and have internal state.

A may exe
ute instru
tions of the form M1 := query(M2).The 
ontents of the 
ell M2 is then given to the ora
le andthe return value written to the 
ell M1.
A with a

ess to the ora
le O(�) is denoted AO(�).



Experiment Exp

s-FtG;b� (A) for a symmetri
 
ryptosystem�: k K()(M0;M1; s) A
Ek(�)1 ()C  Ek(Mb)b�  A

Ek(�)2 (C; s)return b�A

ess to the ora
le is a resour
e (like running time). Inse
urity de�nitions we may want to dis
riminate based onits usage:� is (t; q; �; ")-FtG-se
ure against CPA if Advs-FtG� (A) 6 "for all adversaries A whose running time is at most t andwho make at most q queries to the ora
le, totalling at most� bits.



Experiment Exp

s-LoR;b� (A) (�left or right�):k K()b�  ALR(�;�;k;b)()return b�whereLR(M0;M1; k; b) = if jM0j = jM1j then Ek(Mb) else error(LR is randomized be
ause E is)Also an often-used de�nition. . .Here the length of a query (M0;M1) is de�ned as jM0j.



In a 
hosen-
iphertext atta
k the adversary also has a

essto the de
ryption fun
tionality.Consider the following experiment Exp

s-CCA;b� (A):k K()b�  ALR(�;�;k;b);D(�)()return b�

Exer
ise. Why 
annot the CCA-se
urity of symmetri

ryptosystems be de�ned based on that experiment?



A
tually, it 
an. . .� is (t; qe; �e; qd; �d; ")-LoR-se
ure against CCA if

Advs-CCA� (A) 6 " for all adversaries A whose running timeis at most t, who make at most qe queries to the �rst ora
le(at most �e bits total), at most qd queries to the se
ondora
le (at most �d bits total) and do not query the se
ondora
le with the bit-strings returned by the �rst.

We model a situation where the atta
ker 
an 
ause thesystem to de
rypt some, but not all 
iphertexts.To give a de�nition that is as strong as possible, we onlyex
lude 
iphertexts whose de
ryption would immediatelybreak the se
urity.



For FtG-se
urity against CCA 
onsider the followingexperiment: k K()(M0;M1; s) A
Ek(�);Dk(�)1 ()C  Ek(Mb)b�  A

Ek(�);Dk(�)2 (C; s)return b�where A2 may not invoke Dk(C).We get two possible se
urity de�nitions here, dependingon whether A2 has a

ess to Dk(�) or not.



� A2 has a

ess to D � se
urity against adaptive CCA� Equivalent to LoR-se
urity.� Also 
alled �midnight atta
k�, CCA2.� A2 does not have a

ess to D � se
urity against non-adaptive CCA� Also 
alled �lun
htime atta
k�, CCA1.



For asymmetri
 
ryptosystems 
onsider the following ex-periment: (sk ;pk) K()(M0;M1; s) A
Dsk (�)1 (pk)C  Epk (Mb)b�  A

Dsk (�)2 (C; s)return b�where A2 may not invoke Dsk (C).Again, two de�nitions are possible, depending on A2's a
-
ess to D.



A blo
k 
ipher E with blo
k length l is a triple (K;E;D)of algorithms.� K() is a probabilisti
 key generation algorithm;� Ek(x) is a deterministi
 algorithm. For a �xed key k,

Ek(�) is a permutation of f0; 1g�.� Dk(�) is the inverse permutation of Ek(�).What is a suitable se
urity de�nition for it?



Let Perml be the following probability distribution:� its underlying set is the set of permutations of f0; 1gl;� it is uniform.If �  Perml then we say that � is a random permutation(over l-bit strings).� �random� is not a property of a permutation, but ratherof its 
hoi
e.We want Ek(�) (for k 
hosen a

ording to K) to look like arandom permutation.Exer
ise. How to �implement� a random permutation?



Let the experiment Exp

PRP;1E (A) bek K(); b�  A
Ek(�); return b�and the experiment Exp

PRP;0E (A) be�  Perml; b�  A

�(�); return b�Let

AdvPRPE (A) = Pr[Exp

PRP;1E (A) = 1℄�Pr[Exp

PRP;0E (A) = 1℄Blo
k 
ipher E is a (t; q; ")-pseudorandom permutation if

AdvPRPE (A) 6 " for all adversaries A of running time atmost t and making at most q ora
le queries.



A related notion is (pseudo)random fun
tion.Let Randl!L be the uniform probability distribution overall fun
tions from f0; 1gl to f0; 1gL.Exer
ise. How to �implement� it?Let Exp

PRF;1E (A) = Exp

PRP;1E (A) and Exp

PRF;0E (A) be�  Randl!l; b�  A

�(�); return b�Let

AdvPRFE (A) = Pr[Exp

PRF;1E (A) = 1℄�Pr[Exp

PRF;0E (A) = 1℄Blo
k 
ipher E is a (t; q; ")-pseudorandom fun
tion if
AdvPRFE (A) 6 " for all adversaries A of running time atmost t and making at most q ora
le queries.



A blo
k 
ipher is a pseudorandom fun
tion i� it is a pseu-dorandom permutation.Theorem. jAdvPRFE (A) � AdvPRPE (A)j 6 q(q � 1)=2l+1where q is the number of ora
le queries made by A.

Proof.

AdvPRFE (A)�AdvPRPE (A) =Pr[Exp

PRP;0E (A) = 1℄� Pr[Exp

PRF;0E (A) = 1℄The responses to ora
le queries in experiments for PRPsand PRFs are the same, ex
ept that for PRPs, they allmust be di�erent.Among q queries, there are q(q � 1)=2 query pairs. Theprobability that a pair of di�erent queries produ
es thesame answer for PRF is 1=2l.



Theorem. If a blo
k 
ipher is a (t; q; ")-pseudorandompermutation then it is also a (t; q; "+ q(q�1)2l )-pseudorandomfun
tion.Theorem. If a blo
k 
ipher is a (t; q; ")-pseudorandomfun
tion then it is also a (t; q; " + q(q�1)2l )-pseudorandompermutation.



Re
all the 
ounter mode of operation of blo
k 
iphers:IV
y0

IV + 1
Ek

x1 y1
IV + 2

Ek
x2 y2

IV + 3

Ek
x3 y3

IV + 4

Ek
x4 y4We show that if E is a good pseudorandom fun
tion thenthe resulting symmetri
 en
ryption system is se
ure agaistCPA (in left-or-right sense).



Blo
k 
ipher E = (KE;EE;DE).Symmetri
 en
ryption system � = (K�;E�;D�) de�nedby� K� = KE;� E�k (x1 � � � xn), where xi 2 f0; 1gl is� IV 2R f0; 1gl; y0 := IV� yi := EEk (IV + i)� xi� return y0 � � � yn.� D�k = E�k .(Denote � = XOR[E℄)



Theorem. If E is a (t; q; ")-pseudorandom fun
tion then� is a symmetri
 en
ryption system that is (t0; q0; �0; "0)-LoR-se
ure against CPA, wheret0 = : : :q0 = : : :�0 = : : :"0 = : : :



Let RO be the following ora
le: on input x of length nlgenerate y 2R f0; 1g(n+1)l and return it.De�ne the experiment Exp

RF;1� (A):k K
�(); b�  A

Ek(�)(); return b�and Exp

RF;0� (A):b�  A
RO(�)(); return b�

RO may be 
onsidered as a symmetri
 en
ryption system.(KRO returns a 
onstant and DRO does not exist(D is not ne
essary for talking about CPA))



Re
all the experiment Exp

s-LoR;b� (A):k K()b�  ALR(�;�;k;b)()return b�whereLR(M0;M1; k; b) = if jM0j = jM1j then Ek(Mb) else error

Lemma. Advs-LoRRO (A) = 0 for any adversary A.
Proof. The distribution of ERO(M) does not depend on M .Hen
e the values returned by LR do not depend on b.



Let � = XOR[Randl!l℄. I.e.� K�() pi
ks a random fun
tion f from f0; 1gl to f0; 1gl;� E�f (x1 � � � xn) = y0 � � � yn where y0 is random and yi =f(y0 + i)� xi;� D�f = E�f .Lemma. For all adversaries A that make at most q ora
lequeries with � bits in total,Pr[AE�f (�)() = 1 j f  Randl!l℄� Pr[ARO(�)() = 1℄ 6 : : :



The answers from RO(�) are 
ompletely random.The answers from E�f (�) are also 
ompletely random, aslong as f is not invoked twi
e on the same argument.There are up to q queries to E�f (�). Assume that the i-thquery is ni blo
ks long. Then ni > 0 and Pqi=1 ni 6 �=l.Let IV 1; : : : ; IV q be independent, uniformly distributedrandom variables over f0; 1gl. What is the probability thatsome of the following numbers are equal?IV 1 + 1 IV 1 + 2 � � � IV 1 + n1IV 2 + 1 IV 2 + 2 � � � IV 2 + n2... ... . . . ...IV q + 1 IV q + 2 � � � IV q + nq



� When 
hoosing IV 1, there are 0 possibilities (out of2l) to 
reate a 
ollision.� When 
hoosing IV 2, there are n1 + n2 possibilities to
reate a 
ollision.� When 
hoosing IV 3, there are 6 (n1+n3)+ (n2+n3)possibilities to 
reate a 
ollision.� When 
hoosing IV i, there are 6Pi�1j=1(nj + ni) possi-bilities to 
reate a 
ollision.Summing i = 1; : : : ; q: there are 6 (q � 1)Pqi=1 ni possi-bilities (out of 2l) to 
reate a 
ollision.



Hen
e
Pr[AE�f (�)() = 1 j f  Randl!l℄� Pr[ARO(�)() = 1℄ 6(q � 1)Pqi=1 ni2l 6 (q � 1)�2l � l(that's what our lemma 
laimed).



Lemma. For any adversary A that makes at most q ora
lequeries totalling � bits,
Advs-LoR� (A) 6 (q � 1)�2l�1 � l :

Proof. Constru
t the following algorithm BO(�):� Generate d 2R f0; 1g;� Let b A(�;�)();� Whenever A makes an ora
le query (M0;M1), re-turn O(Md).� If d = b, return 1, else return 0.We see that B makes as many ora
le queries as A, with thesame total length.



(q � 1)�2l � l >Pr[BE�f (�)() = 1 j f  Randl!l℄� Pr[BRO(�)() = 1℄ =Pr[d = 0℄�Pr[Exp

s-LoR;0� (A) = 0℄+Pr[d = 1℄�Pr[Exp

s-LoR;1� (A) = 1℄�Pr[d = 0℄�Pr[Exp

s-LoR;0
RO

(A) = 0℄�Pr[d = 1℄�Pr[Exp

s-LoR;1

RO

(A) = 1℄ =12(1� Pr[Exp

s-LoR;0� (A) = 1℄ + Pr[Exp

s-LoR;1� (A) = 1℄)�12(1� Pr[Exp

s-LoR;0

RO

(A) = 1℄ + Pr[Exp

s-LoR;1
RO

(A) = 1℄) =12(Advs-LoR� (A)�Advs-LoRRO (A)) = 12Advs-LoR� (A)



Lemma. For any b 2 f0; 1g and any adversary A withrunning time at most t, whose ora
le queries total at most� bits there is an adversary B with running time at mostO(t) that makes at most �=l ora
le queries and satis�es

Advs-LoR� (A) 6 : : : �AdvPRFE (B) + : : :



Proof. Given su
h A, let BO(�) belet Q = XOR[O℄d 2R f0; 1gb ALR(�;�;d)()
if d = b then 1 else 0whereLR(M0;M1; d) = if jM0j = jM1j then Q(Md) else errorThe number of ora
le queries made by B is �=l. The run-ning time of B 
onsists of the time to run A, to implementthe XOR-mode, and to generate and 
ompare d.



AdvPRFE (B) =Pr[Exp
PRF;1E (B) = 1℄� Pr[Exp

PRF;0E (B) = 1℄ =12(Pr[Exp

s-LoR;0� (A) = 0℄ + Pr[Exp

s-LoR;1� (A) = 1℄)�12(Pr[Exp

s-LoR;0� (A) = 0℄ + Pr[Exp

s-LoR;1� (A) = 1℄) =12(Advs-LoR� (A)�Advs-LoR� (A)) :Hen
e

Advs-LoR� (A) 6 2 �AdvPRFE (B) + (q � 1)�2l�2 � l :



Theorem. If E is a (t; q; ")-pseudorandom fun
tion then� is a symmetri
 en
ryption system that is (t0; q0; �0; "0)-LoR-se
ure against CPA, where
t0 = tO(1)q0 = q�0 = q � l"0 = 2 � "+ q � 12l�2



What is an appropriate de�nition of se
urity for messageauthenti
ation 
odes?Consider an a
tive adversary. It may obtain the tag of
ertain messages of its 
hoi
e. (
hosen-message atta
k)Adversary is su

essful if it 
an 
onstru
t the tag of somemessage that has not been MAC'ed before (existential forgery).



A MAC (K; sig ; ver ) is (t; q; �; ")-se
ure against EF-CMAif for all adversaries A whose running time is bounded byt, and who make no more than q ora
le queries totallingno more than � bits,

Pr24 verk(M;�) = true and
A did not query M k K()(M;�) Asigk(�)()

35 6 "

Se
urity def. for digital signatures is similar, but A getsthe veri�
ation key, too.



Sometimes we do not just have a single 
ryptographi
 prim-itive �, but an entire family of primitives f�kgk2N .This k is related to the se
urity of the primitive. Larger kmeans more se
urity.Example: various primitives based on number-theoreti
problems. k is the size of the moduli.We want to talk about the rate at whi
h se
urity in
reasesif we in
rease k.



Let the adversary A also take the parameter k.Let there be some polynomial p, su
h that the runningtime of A(k; : : :) is at most p(k).
Adv�k(A(k; : : :)) is then also a fun
tion of k.We want this fun
tion to be negligible:

8q 2 N [x℄ 9k0 2 N 8k > k0 : Adv�k(A(k; : : :))(k) 6 1q(k) :



Alternatively, we may 
onsider for ea
h k the fun
tion"k(t) = maxAAdv�k(A) where max is taken over all ad-versaries with running time 6 t.For ea
h polynomial p we then demand the mappingk 7! "k(p(k))to be negligible.Exer
ise. What is the di�eren
e between those two de�-nitions?


