
How to formalize the seurity of ryptographi primitivesagainst ertain kinds of attaks?For onreteness, onsider asymmetri enryption againsthosen-plaintext attaks (CPA).� A key pair (sk ;pk ) is generated, using the key gener-ation algorithm K.� pk is given to the adversary A.� A message is enrypted. The ryptotext is given tothe adversary.� The adversary tries to dedue something about themessage.



Suess probability of the adversary A attaking a ryp-tosystem � = (K;E;D) should be small:

Pr
2666664 X has somethingto do with M . . .

(sk ;pk) K()M  DC  Epk (M)X  A(pk ; C)
3777775 6 "0 + "

Here "0 is the suess probability of an adversary that �doesnot really try to �nd the orret X�.How small should "0 be?" is the advantage of A. It haraterizes how muh C helpsto say something about M .



�something to do with� � let there be a funtionf : f0; 1g� ! f0; 1g� whose value A tries to �nd.

Pr
2666664 X = f(M)

(sk ;pk) K()M  DC  Epk (M)X  A(pk ; C)
3777775 6 "0 + "



We get "0 by running A �without C�.

Pr
2666664 X = f(M)

(sk ;pk) K()M  DC  Epk(M)X  A(pk ; C)
3777775 6

Pr
2666666664 X = f(M 0)

(sk ;pk) K()M  DM 0  DC  Epk (M)X  A(pk ; C)
3777777775+ "



Let Exp
CPA;b� (A) denote the following random variable (alledexperiment): (sk ;pk) K()M0  DM1  DC  Epk (M1)X  A(pk ; C)if X = f(Mb) then 1 else 0 .The inequality on the previous slide is thenPr[Exp

CPA;1� (A) = 1℄� Pr[Exp

CPA;0� (A) = 1℄ 6 " :Denote that di�erene by AdvCPA� (A).



Let A provide D and f . It now works in two stages, A1and A2. Exp

CPA;b� (A) is then(sk ;pk) K()(D; s) A1(pk)M0  DM1  DC  Epk (M1)(f;X) A2(C; s)if X = f(Mb) then 1 else 0 .Here s is the �internal state� of A. Most probably it in-ludes pk .



AdvCPA� (A) = Pr[Exp

CPA;1� (A) = 1℄�Pr[Exp

CPA;0� (A) = 1℄We say that � is (t; ")-seure against CPA if AdvCPA� (A) 6" for all adversaries A whose running time is at most t.

On running time: Assume that A is represented as asequene of instrutions. Aessing the i-th instrution ofthat sequene is forbidden before the i-th lok tik.Exerise. What would happen if we allowed A to aessup to �(2i)-th instrution at the i-th lok tik?Exerise. Show that E has to be probabilisti for � tosatisfy that seurity de�nition (for reasonable t and ").



This kind of de�nition is alled semanti seurity (of an en-ryption system). There are several others (about) equiv-alent to it.All have the form �AdvXXX� (A) 6 " for all A with runningtime at most t�, where
AdvXXX� (A) = Pr[Exp

XXX;1� (A) = 1℄�Pr[Exp

XXX;0� (A) = 1℄

The def. on previous slide should be alled �semanti se-urity against CPA�.



Example: �nd-then-guess seurity against CPA.

Exp

FtG;b� (A) is (sk ;pk ) K()(M0;M1; s) A1(pk)C  Epk (Mb)b�  A2(C; s)return b�I.e. A hooses two plaintexts, reeives the enryption ofone of them, and tries to guess, whih.



How do the de�nitions for seurity against CPA for sym-metri ryptosystems look like?The adversary should still be able to obtain enryptionsfor hosen plaintexts.Hene we give it the aess to enryption funtionality.The adversary A will be an orale (Turing) mahine.A orale is something that takes queries and answers tothem. It may be randomized and have internal state.

A may exeute instrutions of the form M1 := query(M2).The ontents of the ell M2 is then given to the orale andthe return value written to the ell M1.
A with aess to the orale O(�) is denoted AO(�).



Experiment Exp

s-FtG;b� (A) for a symmetri ryptosystem�: k K()(M0;M1; s) A
Ek(�)1 ()C  Ek(Mb)b�  A

Ek(�)2 (C; s)return b�Aess to the orale is a resoure (like running time). Inseurity de�nitions we may want to disriminate based onits usage:� is (t; q; �; ")-FtG-seure against CPA if Advs-FtG� (A) 6 "for all adversaries A whose running time is at most t andwho make at most q queries to the orale, totalling at most� bits.



Experiment Exp

s-LoR;b� (A) (�left or right�):k K()b�  ALR(�;�;k;b)()return b�whereLR(M0;M1; k; b) = if jM0j = jM1j then Ek(Mb) else error(LR is randomized beause E is)Also an often-used de�nition. . .Here the length of a query (M0;M1) is de�ned as jM0j.



In a hosen-iphertext attak the adversary also has aessto the deryption funtionality.Consider the following experiment Exp

s-CCA;b� (A):k K()b�  ALR(�;�;k;b);D(�)()return b�

Exerise. Why annot the CCA-seurity of symmetriryptosystems be de�ned based on that experiment?



Atually, it an. . .� is (t; qe; �e; qd; �d; ")-LoR-seure against CCA if

Advs-CCA� (A) 6 " for all adversaries A whose running timeis at most t, who make at most qe queries to the �rst orale(at most �e bits total), at most qd queries to the seondorale (at most �d bits total) and do not query the seondorale with the bit-strings returned by the �rst.

We model a situation where the attaker an ause thesystem to derypt some, but not all iphertexts.To give a de�nition that is as strong as possible, we onlyexlude iphertexts whose deryption would immediatelybreak the seurity.



For FtG-seurity against CCA onsider the followingexperiment: k K()(M0;M1; s) A
Ek(�);Dk(�)1 ()C  Ek(Mb)b�  A

Ek(�);Dk(�)2 (C; s)return b�where A2 may not invoke Dk(C).We get two possible seurity de�nitions here, dependingon whether A2 has aess to Dk(�) or not.



� A2 has aess to D � seurity against adaptive CCA� Equivalent to LoR-seurity.� Also alled �midnight attak�, CCA2.� A2 does not have aess to D � seurity against non-adaptive CCA� Also alled �lunhtime attak�, CCA1.



For asymmetri ryptosystems onsider the following ex-periment: (sk ;pk) K()(M0;M1; s) A
Dsk (�)1 (pk)C  Epk (Mb)b�  A

Dsk (�)2 (C; s)return b�where A2 may not invoke Dsk (C).Again, two de�nitions are possible, depending on A2's a-ess to D.



A blok ipher E with blok length l is a triple (K;E;D)of algorithms.� K() is a probabilisti key generation algorithm;� Ek(x) is a deterministi algorithm. For a �xed key k,

Ek(�) is a permutation of f0; 1g�.� Dk(�) is the inverse permutation of Ek(�).What is a suitable seurity de�nition for it?



Let Perml be the following probability distribution:� its underlying set is the set of permutations of f0; 1gl;� it is uniform.If �  Perml then we say that � is a random permutation(over l-bit strings).� �random� is not a property of a permutation, but ratherof its hoie.We want Ek(�) (for k hosen aording to K) to look like arandom permutation.Exerise. How to �implement� a random permutation?



Let the experiment Exp

PRP;1E (A) bek K(); b�  A
Ek(�); return b�and the experiment Exp

PRP;0E (A) be�  Perml; b�  A

�(�); return b�Let

AdvPRPE (A) = Pr[Exp

PRP;1E (A) = 1℄�Pr[Exp

PRP;0E (A) = 1℄Blok ipher E is a (t; q; ")-pseudorandom permutation if

AdvPRPE (A) 6 " for all adversaries A of running time atmost t and making at most q orale queries.



A related notion is (pseudo)random funtion.Let Randl!L be the uniform probability distribution overall funtions from f0; 1gl to f0; 1gL.Exerise. How to �implement� it?Let Exp

PRF;1E (A) = Exp

PRP;1E (A) and Exp

PRF;0E (A) be�  Randl!l; b�  A

�(�); return b�Let

AdvPRFE (A) = Pr[Exp

PRF;1E (A) = 1℄�Pr[Exp

PRF;0E (A) = 1℄Blok ipher E is a (t; q; ")-pseudorandom funtion if
AdvPRFE (A) 6 " for all adversaries A of running time atmost t and making at most q orale queries.



A blok ipher is a pseudorandom funtion i� it is a pseu-dorandom permutation.Theorem. jAdvPRFE (A) � AdvPRPE (A)j 6 q(q � 1)=2l+1where q is the number of orale queries made by A.

Proof.

AdvPRFE (A)�AdvPRPE (A) =Pr[Exp

PRP;0E (A) = 1℄� Pr[Exp

PRF;0E (A) = 1℄The responses to orale queries in experiments for PRPsand PRFs are the same, exept that for PRPs, they allmust be di�erent.Among q queries, there are q(q � 1)=2 query pairs. Theprobability that a pair of di�erent queries produes thesame answer for PRF is 1=2l.



Theorem. If a blok ipher is a (t; q; ")-pseudorandompermutation then it is also a (t; q; "+ q(q�1)2l )-pseudorandomfuntion.Theorem. If a blok ipher is a (t; q; ")-pseudorandomfuntion then it is also a (t; q; " + q(q�1)2l )-pseudorandompermutation.



Reall the ounter mode of operation of blok iphers:IV
y0

IV + 1
Ek

x1 y1
IV + 2

Ek
x2 y2

IV + 3

Ek
x3 y3

IV + 4

Ek
x4 y4We show that if E is a good pseudorandom funtion thenthe resulting symmetri enryption system is seure agaistCPA (in left-or-right sense).



Blok ipher E = (KE;EE;DE).Symmetri enryption system � = (K�;E�;D�) de�nedby� K� = KE;� E�k (x1 � � � xn), where xi 2 f0; 1gl is� IV 2R f0; 1gl; y0 := IV� yi := EEk (IV + i)� xi� return y0 � � � yn.� D�k = E�k .(Denote � = XOR[E℄)



Theorem. If E is a (t; q; ")-pseudorandom funtion then� is a symmetri enryption system that is (t0; q0; �0; "0)-LoR-seure against CPA, wheret0 = : : :q0 = : : :�0 = : : :"0 = : : :



Let RO be the following orale: on input x of length nlgenerate y 2R f0; 1g(n+1)l and return it.De�ne the experiment Exp

RF;1� (A):k K
�(); b�  A

Ek(�)(); return b�and Exp

RF;0� (A):b�  A
RO(�)(); return b�

RO may be onsidered as a symmetri enryption system.(KRO returns a onstant and DRO does not exist(D is not neessary for talking about CPA))



Reall the experiment Exp

s-LoR;b� (A):k K()b�  ALR(�;�;k;b)()return b�whereLR(M0;M1; k; b) = if jM0j = jM1j then Ek(Mb) else error

Lemma. Advs-LoRRO (A) = 0 for any adversary A.
Proof. The distribution of ERO(M) does not depend on M .Hene the values returned by LR do not depend on b.



Let � = XOR[Randl!l℄. I.e.� K�() piks a random funtion f from f0; 1gl to f0; 1gl;� E�f (x1 � � � xn) = y0 � � � yn where y0 is random and yi =f(y0 + i)� xi;� D�f = E�f .Lemma. For all adversaries A that make at most q oralequeries with � bits in total,Pr[AE�f (�)() = 1 j f  Randl!l℄� Pr[ARO(�)() = 1℄ 6 : : :



The answers from RO(�) are ompletely random.The answers from E�f (�) are also ompletely random, aslong as f is not invoked twie on the same argument.There are up to q queries to E�f (�). Assume that the i-thquery is ni bloks long. Then ni > 0 and Pqi=1 ni 6 �=l.Let IV 1; : : : ; IV q be independent, uniformly distributedrandom variables over f0; 1gl. What is the probability thatsome of the following numbers are equal?IV 1 + 1 IV 1 + 2 � � � IV 1 + n1IV 2 + 1 IV 2 + 2 � � � IV 2 + n2... ... . . . ...IV q + 1 IV q + 2 � � � IV q + nq



� When hoosing IV 1, there are 0 possibilities (out of2l) to reate a ollision.� When hoosing IV 2, there are n1 + n2 possibilities toreate a ollision.� When hoosing IV 3, there are 6 (n1+n3)+ (n2+n3)possibilities to reate a ollision.� When hoosing IV i, there are 6Pi�1j=1(nj + ni) possi-bilities to reate a ollision.Summing i = 1; : : : ; q: there are 6 (q � 1)Pqi=1 ni possi-bilities (out of 2l) to reate a ollision.



Hene
Pr[AE�f (�)() = 1 j f  Randl!l℄� Pr[ARO(�)() = 1℄ 6(q � 1)Pqi=1 ni2l 6 (q � 1)�2l � l(that's what our lemma laimed).



Lemma. For any adversary A that makes at most q oralequeries totalling � bits,
Advs-LoR� (A) 6 (q � 1)�2l�1 � l :

Proof. Construt the following algorithm BO(�):� Generate d 2R f0; 1g;� Let b A(�;�)();� Whenever A makes an orale query (M0;M1), re-turn O(Md).� If d = b, return 1, else return 0.We see that B makes as many orale queries as A, with thesame total length.



(q � 1)�2l � l >Pr[BE�f (�)() = 1 j f  Randl!l℄� Pr[BRO(�)() = 1℄ =Pr[d = 0℄�Pr[Exp

s-LoR;0� (A) = 0℄+Pr[d = 1℄�Pr[Exp

s-LoR;1� (A) = 1℄�Pr[d = 0℄�Pr[Exp

s-LoR;0
RO

(A) = 0℄�Pr[d = 1℄�Pr[Exp

s-LoR;1

RO

(A) = 1℄ =12(1� Pr[Exp

s-LoR;0� (A) = 1℄ + Pr[Exp

s-LoR;1� (A) = 1℄)�12(1� Pr[Exp

s-LoR;0

RO

(A) = 1℄ + Pr[Exp

s-LoR;1
RO

(A) = 1℄) =12(Advs-LoR� (A)�Advs-LoRRO (A)) = 12Advs-LoR� (A)



Lemma. For any b 2 f0; 1g and any adversary A withrunning time at most t, whose orale queries total at most� bits there is an adversary B with running time at mostO(t) that makes at most �=l orale queries and satis�es

Advs-LoR� (A) 6 : : : �AdvPRFE (B) + : : :



Proof. Given suh A, let BO(�) belet Q = XOR[O℄d 2R f0; 1gb ALR(�;�;d)()
if d = b then 1 else 0whereLR(M0;M1; d) = if jM0j = jM1j then Q(Md) else errorThe number of orale queries made by B is �=l. The run-ning time of B onsists of the time to run A, to implementthe XOR-mode, and to generate and ompare d.



AdvPRFE (B) =Pr[Exp
PRF;1E (B) = 1℄� Pr[Exp

PRF;0E (B) = 1℄ =12(Pr[Exp

s-LoR;0� (A) = 0℄ + Pr[Exp

s-LoR;1� (A) = 1℄)�12(Pr[Exp

s-LoR;0� (A) = 0℄ + Pr[Exp

s-LoR;1� (A) = 1℄) =12(Advs-LoR� (A)�Advs-LoR� (A)) :Hene

Advs-LoR� (A) 6 2 �AdvPRFE (B) + (q � 1)�2l�2 � l :



Theorem. If E is a (t; q; ")-pseudorandom funtion then� is a symmetri enryption system that is (t0; q0; �0; "0)-LoR-seure against CPA, where
t0 = tO(1)q0 = q�0 = q � l"0 = 2 � "+ q � 12l�2



What is an appropriate de�nition of seurity for messageauthentiation odes?Consider an ative adversary. It may obtain the tag ofertain messages of its hoie. (hosen-message attak)Adversary is suessful if it an onstrut the tag of somemessage that has not been MAC'ed before (existential forgery).



A MAC (K; sig ; ver ) is (t; q; �; ")-seure against EF-CMAif for all adversaries A whose running time is bounded byt, and who make no more than q orale queries totallingno more than � bits,

Pr24 verk(M;�) = true and
A did not query M k K()(M;�) Asigk(�)()

35 6 "

Seurity def. for digital signatures is similar, but A getsthe veri�ation key, too.



Sometimes we do not just have a single ryptographi prim-itive �, but an entire family of primitives f�kgk2N .This k is related to the seurity of the primitive. Larger kmeans more seurity.Example: various primitives based on number-theoretiproblems. k is the size of the moduli.We want to talk about the rate at whih seurity inreasesif we inrease k.



Let the adversary A also take the parameter k.Let there be some polynomial p, suh that the runningtime of A(k; : : :) is at most p(k).
Adv�k(A(k; : : :)) is then also a funtion of k.We want this funtion to be negligible:

8q 2 N [x℄ 9k0 2 N 8k > k0 : Adv�k(A(k; : : :))(k) 6 1q(k) :



Alternatively, we may onsider for eah k the funtion"k(t) = maxAAdv�k(A) where max is taken over all ad-versaries with running time 6 t.For eah polynomial p we then demand the mappingk 7! "k(p(k))to be negligible.Exerise. What is the di�erene between those two de�-nitions?


