DES (Data Encryption Standard) (January 15th, 1977).
o P=20C={0,1}°
e X ={0,1}".
e Fncoding bit-string = with the key K:

1. Let zg = IP(z), where IP is a certain permutation of

bits. Let Ly [Ry] be the first [last] 32 bits of z.
2. 16 rounds of Feistel construction:
L, =R; 4 Ri=L,1® f(Ri_1, K))

Here 1 <1 < 16, K; € {0,1}*® consist of certain 48
bits of K.

3. Let y = IP_l(R16L16). y 1s the ciphertext.



f:40,1}°* x {0,1}*® — {0,1}°2. f(A, J) works as follows:

1. “Expand” A to E(A) of length 48. The function E out-
puts the bits of its argument in certain order (16 bit

positions occur once and 16 occur twice).
2. Let By---Bg = E(A) ® J, where B; € {0, 1}°.

3. Let C; = S;(B;), where S; : {0,1}° — {0,1}* is a fixed
mapping. (the S-boz)

4. return P(C;---Cg) where P is a certain permutation
of bits.
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Decryption: like encryption, but round keys taken in order
K16) K15) R Kl-

In the standard, the encryption key i1s actually 8 bytes long.

e The least significant bit in each byte 1s a parity check
bit. Not used in actual encryption.

e The number of 1-s in each byte is odd.



Differential cryptanalysis — a chosen-plaintext attack.

For reduced-round DES, it is more efficient than brute-

force search.

n-round DES — Lo Ry — L, R,. We ignore the bit-permutations
IP, IP~ ! nor do we swap L, and R,.

Idea, given two bit-strings LoR, and LjR; with a fixed
xor LyR), = LoRy ® L{R}, we compare the xor-s of their
encryptions. This will help us to exclude certain values for
the key.

We attempt to reconstruct the xor-s of the intermediate

computations.



Let B’ € {0,1}° and 1 < j < 8. For all B € {0, 1}° consider
the value S;(B) ® S;(B® B').

e The pairs (B, B @ B') range over all possible pairs of

six-bit strings with xor B’.

e The bit-strings S,;(B) @ S,;(B @ B') range over four-bit
strings.
— Typically, not all four-bit strings are achieved.

— If the output xor of an S-box is C' then certain

input xor-s are excluded.



For B' € {0,1}°, C' € {0,1}* and j € {1,...,8} define
IN;,(B,C"Y={Be{0,1}°|S;(B)® S;(B® B') =C"}
N,;(B',C") =|IN,;(B',C")

The sets IN ;(B’,C") can be computed from the definition

of S-boxes. There are 8192 such sets — not too many.

About a fifth of the sets IN;(B’,C") is empty.



Let now B, B* € {0, 1}*® be two inputs to (all) S-boxes in
a computation of f with B’ = B @ B*. Then

B =Be®B*=E(A)a&Ja E(A")a&J=EA)® EA)

Denote E(A) by E and E(A*) by E*. We see that B’ does
not depend on J. If C = S(B) and C* = S(B*) then
C' = C & C* depends on J.

Let
test;(Ej;, B}, C;) = {B; ® E;| Bj € IN;(E;,C})}

where E;, EY € {0,1}°, C} € {0,1}* and E} = E; @ E;.



Theorem. Let Ej;, B be two inputs to the S-box 5; (before
being xor-ed with the key bits J;). Let C’ be the output
xor of these inputs. Then J; € test;(Ej, B}, C}).

To obtain a unique result, use several triples E, E*, C’.



Example: three-round DES. If the plaintext 1s LgERy and
ciphertext 1s L3 R3 then

R3 — L2 D f(R2) K3) — LO D f(RO) Kl) S> f(R2a K3)
L3 — R2 — Ll D f(R11K2) — RO D f(R11K2)

Pick another plaintext LiRj. Then R; = R3 @ R} equals
Ry = Lo ® f(Ro, K1) @ f(Fg, K1) @ f(Ra, K3) @ f(R, Ka)
We choose R} = Ry. Then Rj = 0°¢ and

R, =Ly® f(R:, K3) @ f(R;, K3) .



We know L; and R;. Hence we can compute

f(Ro, K3) @ f(R3 K3) = R3 @ Ly .
f(Rs, K3) = P(C) and f(R3, K3) = P(C*) for some S-box
outputs C and C*. We have C' = C & C* = P (R, ® Ly).

We know R, = L3 and R5 = L. The inputs to the S-box
are E(R,) ® K3 and E(R3) & K.

We know E, E*,C' for the third round. We can compu-
te the sets testq, ..., testg and construct candidate round
keys Ks.

Using several such triples F, E*,C' we narrow down the
set of candidate round keys Ks.



A one-round characteristic i1s a quantity
p
LyR, = LR,
where
o I = Ry;

e For any choice of Ly, Ry, the quantity p; is the proba-
bility that (taken over uniformly chosen J € {0, 1}*®)

(Lo ® f(Ro,J)) ® (Lo ® Ly) ® f(Ro ® Ry, J)) = R}
or that
f(Ro,J)® f(Ro® Ry, J) = Ry ® Ly .

That probability does not depend on R, either.
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p; 1s the probability that
S(B)® S(B® E(R})) = P '(R))® P (L)

where B € {0, 1}*® has been uniformly chosen.

An n-round characteristic is

! ! Pl ! ol P2 Pn I Pl

Py : -
where each L, ,R. , — L.R! is a one-round characteristic.

The probability of such a characteristic is p; - - - p,,.



Some one-round characteristics:

TTTTTTIT 16|0000000046 N 000000006 | ZZZTTTIL 16

00000000,4|6000000046 1%;)4 60000000,6|00808200+¢

Second example: E(Rj) = 001100 - --0,. Hence the inputs
to S-boxes S,, ..., Sg are equal, but the inputs to S; differ
by 001100.

The probability that the outputs to S; differ by z € {0, 1}*
is N;1(001100,,z)/64. In particular, N;(0011005,1110;) =
14.

The output difference of S-boxes 1s 111000 - - - 0, with pro-
bability 14/64. The bit-permutation P brings those three
1-s to the positions shown above.



Example: six-round DES.
RG — R4 D f(R5) KG) — L3 D f(R3) K4) S f(R5a KG)

Ry = L3 ® f(Rs, Ka) ® f(R3, Ka) ® f(Rs, Ke) ® f(R:, Ke)
We try to find K.

A three-round characteristic:

4008000044|0400000046 1—/3 04000000,5/0000000046 N

000000005 6|04000000¢ % 04000000,4|40080000;¢

If L) R, = 40080000,5|04000000;¢ then
L% R, = 04000000,¢|40080000,¢ with probability 1/16.

Assume that this happens, i.e. we know L; and R;. We
also know Rj and R = L.



E(R3;) = 001000/000000/000001|010000|0---0. L.e. the in-
put (and also output) xor-s to Sy, Ss, Ss, S7, S in the fourth
round are zero. We try to find the corresponding 30 bits of
K.

Ry = L; ® f(Rs, Ku) ® f(R5, Ka) @ f(Rs, Ke) ® f(R;, Ke)

and certain 20 bits of f(Rs, K4) and f(R3, K,) are equal.
These 20 bits in f(Rs, Kg) ® f(R:, Kg) are equal to the
same bits in Rg.

We know the output xor-s of 5,5, Ss, Sg, S7, Sg in the sixth
round. We also know the inputs to these S-boxes (as we
know Rs = Lg and R} = Lj).



We know the triples E;, EY, C; for the sixth round, where
1 € {2,5,6,7,8}. We can compute the sets test; and find
the candidate keys.

We also get noise (because our certainty in L3 R; was only
1/16), but the right key should stick out.

To find the right key more quickly:

We have the plaintext pairs (z1,z7), ..., (zn,z)y) With z,;®
;= Ly Ry.
Elach of these pairs defines a quintuple of sets

(testgi), testgi), testgi), testgi), testg)).

For each 1: if this quintuple of sets contains the empty set,
then discard it.



A set {11,...,2,} C{1,..., N} is allowable if

() test{™ # 0 for all j € {2,5,6,7,8} .

k=1
We search for an allowable set of maximum cardinality
(using backtracking).

We have found 30 bits of the key. The characteristic

00200008;500000400¢ %5 00000400,4/00000000;6

00000000,4|0000040046 b 0000040046|002000086
allows us to find further 12 (those corresponding to the
inputs of S; and S;). The remaining 14 bits can be brute-
forced.



A two-round characteristic:

19600000,5/00000000;5 — 00000000, |19600000;¢

14-8-10/(64)3

» 19600000,6|00000000¢

The second fraction is about 1/234. Iterating this charac-
teristic 6.5 times gives a 13-round characteristic of pro-

bability 1/234°. This is the best-known characteristic for
cryptanalysing full 16-round DES.



DES key schedule: Let K = K --- Ky where K; € {0,1}°
(the 8th bit is parity check). Let K; = K;; - - - K;g. Let

C’O — K81K71 S K11K82K72 S K12K83K73 Co K13K84K74K64K54
-DO — K87K77 S K17K86K76 S K16K85K75 Co K15K44K34K24K14

Let
C; = rotateleft,(;)(Ci_1) D; = rotatelefty;)(D;—1)

where a(z) =2 if 1 € {1,2,9,16} and a(z) = 1 otherwise.
The round key J; = B(C;D;) where @ picks certain 48 bits

of its argument.



Self-dual keys:

0101010101010101
FEFEFEFEFEFEFEFE
1F1F1F1FOEOEOEOE
EOEOEOEOF1F1F1F1

Pairs of dual keys:

EOO1EOO1F101F101
FEIFFE1FFEOEFEOE
EO1FEO1FF10EF10E

O1EOO1EOO1F101F1
1FFE1FFEOEFEOEFE
1FEO1FEOOEF10EF1



