
So far, we have only 
onsidered passive adversaries.They keep their ears open and mouth shut.For example, if� A wants to send a se
ret message to B, and� B thus sends his publi
 key to A,then the adversary does not attempt to repla
e that publi
key while in transit.An a
tive adversary might repla
e that publi
 key by itsown, then he 
an read what A has en
rypted.



Digital signatures are a basi
 means to verify the sour
e ofa message.A digital signature s
heme is a tuple (P;A;K; S;V), where� P is the set of possible messages;� A is the set of possible signatures;� K is the set of possible pairs of signature and veri�
a-tion keys (or �se
ret� and �publi
� keys);� S 
ontains a signature generation algorithm sigK forea
h signature key;� V 
ontains a signature veri�
ation algorithm verK forea
h veri�
ation key.



For ea
h (Ks;Kv) 2 K:� sigKs : P �! A;� verKv : P�A �! ftrue; falseg.� For ea
h message m 2 P:verKv(m; sigKs(m)) = true :The algorithms in S and V must be e�
ient.Given m and Kv, it should be infeasible to generate su
hs, that verKv(m; s) = true.A signature s
heme is with appendix (lisaga) if verKv(m; s)a
tually uses m. Otherwise it is with message re
overy(s~onumit taastav).



RSA signature s
heme.Generate large primes p, q. Let n = pq. Let e 2 Z�'(n). Letd = e�1 (mod '(n)).Signature key: (n; d). Veri�
ation key: (n; e). P = A = Zn.sig (n;d)(m) = md mod nver (n;e)(m; s) = �se � m (mod n)�



Atta
ks:Signatures to random messages The advesary may ta-ke an s 2 A and 
ompute m = se mod n. Thenver (n;e)(m; s) = true.Existential forgery.Homomorphi
 properties If ver (n;e)(m1; s1) = true andver (n;e)(m2; s2) = true then alsover (n;e)(m1m2 mod n; s1s2 mod n) = true :

Both atta
ks 
an be thwarted by adding redundan
y tomessages.



How to sign arbitrary messages?Use 
ollision-resistant hash fun
tions.A hash fun
tion is a mapping h : f0; 1g� �! f0; 1gn forsome small n (typi
ally 160 6 n 6 512). It is� one-way if given y 2 f0; 1gn it is infeasible to �nd anyx, su
h that h(x) = y;� 2nd preimage resistant if given x it is infeasible to �ndany x0 6= x, su
h that h(x) = h(x0);� 
ollision-resistant if it is infeasible to �nd any (x; x0),x 6= x0, su
h that h(x) = h(x0).Note that we said �resistant� (kindel), not �free�.



There exist hash fun
tions whi
h are (were) believed to be
ollision-resistant.Collision-resistant hash fun
tions 
an be 
onstru
ted fromse
ure symmetri
 en
ryption systems.There exist hash fun
tions whi
h are 
ollision-resistant un-der standard number-theoreti
 
omplexity assumptions.We take a look at them in the next (or 
urrent?) le
ture.A 
ollision-resistant hash fun
tion is also one-way.



Fix a 
ollision-resistant hash fun
tion h whose output lengthis smaller than the length of the RSA modulus.RSA signature generation is thensig (n;d)(m) = h(m)d mod nand veri�
ation isver (n;e)(m; s) = �se � h(m) (mod n)� :The atta
ks des
ribed before would require inverting h to�nd a suitable message to go with the generated signature.



ElGamal signature s
heme.Fix a group G with hard dis
rete logarithm problem, m =jGj, g is a generator of G. We need a 
ollision-resistanthash fun
tion h : f0; 1g� �! Zm.

P = f0; 1g�. A = G� Zm.Key generation: randomly generate � 2 Zm. � is the sig-nature key and � = g� is the veri�
ation key.To sign, generate a random r 2 Z�m.sig�(m) = let � = gr in (�; (h(m)� �h(� ))r�1 mod m)ver�(m; (�; s)) = ��h(�) � � s = gh(m)�



Signature veri�
ation works:

ver�(m; (gr; (h(m)� �h(gr))r�1)) =h�h(gr) � (gr)h(m)��h(gr))r�1 = gh(m)i

and� �h(gr) = g�h(gr);� (gr)h(m)��h(gr))r�1 = gh(m)=g�h(gr).



Se
urity 
onsiderations:The adversary 
annot forge the signature by generating arandom r and 
omputing � = gr.Indeed, the adversary must then 
omputes = (h(m)� �h(� ))r�1 mod mand if he su

eeds, he 
an also �nd �. This is equivalentto �nding the dis
rete logarithm logg �.



Se
urity 
onsiderations:The random r must be kept se
ret. Otherwise the se
retkey � will be found froms = (h(m)� �h(� ))r�1 mod mHere m is the message and (�; s) is the signature.� = (h(m)� rs)h(� )�1 (mod m)



Se
urity 
onsiderations:Di�erent signatures must use di�erent random r-s. Indeed,if m1 and m2 have signatures (�; s1) and (�; s2), where � =gr and s1 = (h(m1)� �h(� ))r�1s2 = (h(m2)� �h(� ))r�1then we have a simple system of equations with two equa-tions and two unknowns (r and �).We get r = (h(m1)�h(m2)) �(s1�s2)�1 (mod m) and �nd� as in the previous slide.



If G = Z�p (and then m = p� 1) then h(� ) is usually takento be � . (or � mod (p� 1)). In this 
asesig�(m) = let � = gr in (�; (h(m)� �� )r�1 mod (p� 1))ver�(m; (�; s)) = ��� � � s � gh(m) (mod p)� ^ �1 6 � 6 p� 1�



Se
urity 
onsiderations:The 
he
k 1 6 � 6 p� 1 is ne
essary. Otherwise. . .Suppose that the adversary knows the signature (�; s) forthe message m. It wants to sign the message m0. Let� u = h(m0) � (h(m))�1 (mod p� 1);� s0 = su mod (p� 1);� � 0 2 Zp(p�1) satis�es (use CRT to �nd it)8<: � 0 � �u (mod p� 1)� 0 � � (mod p)Then (� 0; s0) will be a

epted as a signature of m0.



Indeed,
�� 0 � � 0s0 � ��u � � su =(�� � � s)u � (gh(m))h(m0)h(m) = gh(m0) (mod p)

If 1 6 � 0 6 p � 1 then � = �u, hen
e u = 1 and h(m) =h(m0). If m 6= m0 then we have a 
ollision.



Se
urity 
onsiderations: If P = Z�p and h(m) = m thenexistential forgeries are possible.The adversary has to generate (m; �; s), su
h that�� � � s � gm (mod p) :It generates u 2 Z , v 2 Z�p�1 and de�nes � = gu�v,s = ��v�1 (mod p� 1) and m = su mod (p� 1). Then�� � � s = �� (gu�v)��v�1 = ��g�u�v�1��v�v�1 = g�u�v�1and �u�v�1 = us � m (mod p� 1).



E�
ien
y 
onsiderations. The signing with ElGamal is fast(requires just a 
ouple of multipli
ations).� � = gr 
an be pre
omputed.To verify, we must 
ompute �h(�), � s and gh(m) � threeexponentiations.Fortunately, 
omputing ae11 � � � aekk (produ
t of powers) 
anbe done faster than k exponentiations.We 
an then 
ompute �h(�) � � s � (g�1)h(m) and 
ompare itto 1 2 G.



We want to 
ompute ae11 � � � aekk .Let ei =Pnj=0 eij2j, where eij 2 f0; 1g and n > maxi log2 ei.De�ne bn+1 = 1 andbr = b2r+1 � Y16i6keir=1 ai :Then br = kYi=1 a
nPj=r eij2j�ri :

And b0 is the produ
t that we are looking for.



We pre
ompute all produ
ts Qi2X ai for X � f1; : : : ; kg.This requires 2k � k � 1 multipli
ations.Computing br from br+1 requires two multipli
ations (so-metimes one). Computing b0 requires � 2n multipli
ations(without pre
omputation).A usual exponentiation requires n to 2n multipli
ations.If k is small, su
h that also 2k is small then the simulta-neous exponentiation is almost as fast as a simple expo-nentiation.



Digital signature algorithm.Proposed by the U.S. National Institute of Standards andTe
hnology.A simple variant of ElGamal signature s
heme in a sub-group of Z�p.Let q be a 160-bit prime number and p a 512-(or 768-, or1024-)bit prime number, su
h that q j (p� 1).I.e. we 
onsider only numbers of the form 2tq + 1 for sui-tably sized t when doing the prime number generation forp.



Let g 2 Z�p have the order q. Let G be generated by g.I.e. raise a generator of Z�p to the power p�1q .The group G should have hard-to-
ompute dis
rete loga-rithms.Indeed, it is too large to use generi
 algorithms, and p istoo large to use algorithms spe
i�
ally for Z�p.The quantities q, p and g may global, or may be 
hosen forea
h key separately.Key generation: randomly generate � 2 Zq . � is the signa-ture key and � = g� 2 Z�p is the veri�
ation key.



To sign m, 
hoose a random r 2 Z�q .� Let � = (gr mod p) mod q 2 Zq .� Let s = r�1(h(m) + �� ) mod q 2 Zq .� Return (�; s).To verify that (�; s) is a signature of m,� Verify that 0 < �; s < q.� Let u1 = s�1h(m) mod q and u2 = �s�1 mod q.� Verify that � = (gu1�u2 mod p) mod q.Exer
ise. Verify that signature veri�
ation works, unless� = 0 or s = 0, whi
h should o

ur extremely rarely.



A hash fun
tion is a fun
tion h : f0; 1g� ! f0; 1gn for some�xed n, su
h that h is easy to 
ompute.A 
ompression fun
tion is a fun
tion h : f0; 1gm ! f0; 1gnfor some �xed m and n, su
h that m > n and h is easy to
ompute.Before we listed the properties �one-wayness�, �2nd prei-mage resistan
e� and �
ollision-resistan
e�.



Theorem. If a hash or 
ompression fun
tion h : X ! Z(here jXj > 2jZj) is not one-way, then it is not 
ollision-resistant.
Proof. Let A be an algorithm, su
h that A(y) returns somex 2 h�1(y).I.e. for any y 2 Z, the probability Pr[h(A(y)) = y℄ is sig-ni�
ant.To generate a 
ollision,� pi
k a random x 2 X.� Let x0 = A(h(x)).� If x 6= x0 then output (x; x0), else fail.The probability of failure is jZj=jXj 6 1=2.



We required from A that for all y 2 Z, the probabilityPr[h(x) = y jx A(y)℄is signi�
ant.Alternatively, we might have required that justPr[h(x) = y j y 2R Z; x A(y)℄is signi�
ant.The non-existen
e of su
h A is a more reasonable de�nitionof one-wayness. . .But then the theorem on previous slide no longer holds.



Indeed, let h : f0; 1g� ! f0; 1gn be a 
ollision-resistanthash fun
tion.De�ne h0 : f0; 1g� ! f0; 1gn+1 by

h0(x) = 8<:1 jj x; if jxj = n0 jj h(x); otherwise :then h0 is 
ollision-resistant, but for half of the values y 2f0; 1gn+1, it is very easy to �nd an element of h0�1(y).



A generi
 way to �nd a 
ollision of a hash fun
tion h is to
ompute the values h(x) for random x-s until a 
ollision isfound.If the values h(x) are n bits long then O(2n=2) attemptsare ne
essary, by the birthday paradox.This atta
k is 
alled the birthday atta
k.That's why the output of modern hash fun
tions (MD5,SHA-1, et
.) are at least 128, and preferably 160 bits long.



A generalization of the birthday paradox: let X be a set,jXj = n. Let x1; : : : ; xk and y1; : : : ; yl be mutually indepen-dent uniformly distributed random variables over X. Theprobability that there exist su
h i and j, that xi = yj, isabout
1� kYi=1

lYj=1 n� 1n = 1� (1� 1n)kl > 1� e� kln > 12

if e� kln 6 12 , i.e. kl 6 n ln 2 = O(n).



Let x and x0 be two meaningful do
uments. The atta
kermay 
hoose n=2 �pla
es� in both of them where it mayor may not make a modi�
ation that does not 
hange themeaning of the do
ument.We get 2n=2 variants of the do
ument x and 2n=2 variants ofthe do
ument x0. With signi�
ant probability, h(�x) = h( �x0)for some variant �x of x and �x0 of x0.(Yuval's atta
k.)



Assume that h : f0; 1gm ! f0; 1gn is a 
ollision-resistant
ompression fun
tion. Let r = m� n. We 
an 
onstru
t a
ollision-resistant hash fun
tion h� : f0; 1g� ! f0; 1gn asfollows.Let � : f0; 1g� ! (f0; 1gr)� be an en
oding fun
tion thatis� easily 
omputable and easily invertible;� su�x-free � if x 6= x0 then neither of �(x) and �(x0)is a su�x of the other.Exer
ise. Constru
t su
h �. Try to keep the in
rease inlength as small as possible.



Let x 2 f0; 1g� and let (x1; : : : ; xt) = �(x), wherex1; : : : ; xt 2 f0; 1gr.Let H0 be the string of n bits 0. Constru
t H1; : : : ; Ht asfollows: Hi = h(Hi�1 jj xi) :We de�ne h�(x) = Ht.This is 
alled the Merkle-Damgård 
onstru
tion.



Theorem. If h is a 
ollision-resistant 
ompression fun
tionthen h� is a 
ollision-resistant hash fun
tion.

Proof. We show how to e�
iently 
onstru
t a 
ollision ofh from a 
ollision of h�.Let x = x0 but h�(x) = h�(x0). Let (x1; : : : ; xt) = �(x) and(x01; : : : ; x0t0) = �(x0). Assume w.l.o.g. that t 6 t0.ComputeH0; : : : ; Ht (from �(x)) andH 00; : : : ; H 0t0 (from �(x0)).We have Ht = H 0t0. There are two 
ases:1. There exists an i 2 f1; : : : ; tg, su
h that Ht�i 6= H 0t0�i.Let i be the smallest with su
h property.2. Ht = H 0t0, Ht�1 = H 0t0�1,. . . , H0 = H 0t0�t.



In the �rst 
ase we have� Ht�i jj xt�i+1 6= H 0t0�i jj x0t0�i+1;� h(Ht�ijjxt�i+1) = Ht�i+1 = H 0t0�i+1 = h(H 0t0�ijjx0t0�i+1).a 
ollision for h.In the se
ond 
ase there are again two 
ases:1. There exists an i 2 f0; : : : ; t�1g, su
h that xt�i 6= x0t0�i.Let i be the smallest with su
h property.2. xt = x0t0, xt�1 = x0t0�1,. . . , x1 = x0t0�t+1.



In the �rst 
ase we have� Ht�i�1 jj xt�i 6= H 0t0�i�1 jj x0t0�i;� h(Ht�i�1 jj xt�i) = Ht�i = H 0t0�i = h(H 0t0�i�1 jj x0t0�i).a 
ollision for h.In the se
ond 
ase �(x) is a su�x of �(x0). This is impos-sible by the 
onstru
tion of �.



Chaum - van Heijst - P�tzmann 
ompression fun
tion isde�ned as follows:Let p 2 P be a strong prime (i.e. q = p�12 is also a prime).Let g be a generator of Z�p and let h be a random elementof Z�p.De�ne h : Zq � Zq ! Z�p by
h(x; y) = gxhy mod p :



Theorem. If the dis
rete logarithm problem is hard in Z�pthen h is 
ollision-resistant.

Proof. Assume that we know a 
ollision for h. Then we 
an�nd z = logg h as follows.Let h(x1; y1) = h(x2; y2), but (x1; y1) 6= (x2; y2). We havegx1�x2 � hy2�y1 (mod p)or x1 � x2 � z(y2 � y1) (mod p� 1)We solve this 
ongruen
e for z (it must have at least onesolution) and try out all possible solutions (raise g to thatpower and 
ompare the result to h).



The pro
edure on the previous slide fails if the 
ongruen
ex1 � x2 � z(y2 � y1) (mod p� 1)has too many solutions.It has g
d(y2 � y1; p � 1) = g
d(y2 � y1; 2q) solutions. Asy1; y2 < q, then also jy2�y1j < q and this g
d 
an be either1 or 2.
Unfortunately, the Chaum - van Heijst - P�tzmann 
omp-ression fun
tion is slow.



Compression fun
tions may be 
onstru
ted from blo
k 
ip-hers.Let a blo
k 
ipher be given, with P = K = C = f0; 1gn forsome n. Then we 
an 
onstru
th : f0; 1gn � f0; 1gn ! f0; 1gn as follows. h(x1; x2) is
Ekeyplaintextx1x2x1 � x2
onst.I.e. there are 64 possibilities. Most of them are not 
ollision-resistant.



Among those 64 fun
tions, there are� 12 
ollision-resistant fun
tions;� 8 fun
tions, whi
h are not 
ollision resistant, but ahash fun
tion, 
onstru
ted from it using the Merkle-Damgård 
onstru
tion, is se
ure;� 44 �useless fun
tions�.



The se
urity proof assumes that E is a randomly 
hosenblo
k 
ipher.Let E be the set of all fun
tions E of typef0; 1gn � f0; 1gn ! f0; 1gnsu
h that E(k; �) is a permutation of f0; 1gn for ea
h k 2f0; 1gn.The se
urity proof assumes that E is uniformly randomly
hosen from E.This is a strong assumption.



That also means that the atta
ker may not �look inside�E. It only has ora
le a

ess to E and D (de
ryption).Collision-resistan
e of a 
onstru
tion means that� for any e�
ient algorithm A� whi
h may 
all E and D, but has no further des
-ription of them;� for a randomly 
hosen E� whi
h also determines D� the probability that AE;D outputs a 
ollision of h isnegligible.



These 12 
ollision-resistant 
ompression fun
tions areE(x1; x2)� x2 E(x1 � x2; x2)� x2E(x1; x1 � x2)� x2 E(x1; x2)� x1 � x2E(x1 � x2; x2)� x1 E(x1; x1 � x2)� x1 � x2and six others, where we swap x1 and x2.



These 8 non-
ollision-resistant 
ompression fun
tions gi-ving 
ollision-resistant hash fun
tions areE(x1 � x2; x2)� 
 E(x1 � x2; x2)� x1 � x2E(x2; x1)� 
 E(x1 � x2; x1)� 
E(x2; x1)� x2 E(x1 � x2; x1)� x1 � x2E(x2; x1 � x2)� 
 E(x2; x1 � x2)� x2 .In Merkle-Damgård 
onstru
tion, x1 is the a

umulatedvalue and x2 the next message blo
k.



Existing dedi
ated hash fun
tions (MD5, SHA-1, RIPEMD,their longer versions) are also 
onstru
ted by Merkle-Damgård
onstru
tion. One has to spe
ify� the en
oding (or padding) fun
tion �;� the 
ompression fun
tion.



In the symmetri
 setting we have seen en
ryption.In the asymmetri
 setting we have seen en
ryption andsigning.What is the analogue to digital signatures in the symmetri
setting?Message authenti
ation 
odes (MACs).� Two parties share a se
ret key.� One party 
an use that key to prove to the other onethat the message was not modi�ed during transit.� This is hopefully more e�
ient than signing the mes-sage.



A MAC has the following 
omponents� Plaintext spa
e P;� Authenti
ation 
ode spa
e A;� Key spa
e K;� tagging algorithm sig : K� P! A;� veri�
ation algorithm ver : K� P�A! ftrue; falseg.verK(m; sigK(m)) = truemust hold.If sig is deterministi
 then ver is already spe
i�ed, too.Se
urity � the adversary (not knowing the key) 
annotprodu
e message-tag pairs that are a

epted by ver .



CBC-MAC: Let a blo
k 
ipher E be given. Let l be theblo
k size.
K of MAC is K of the blo
k 
ipher.

P = (f0; 1gl)�. A = f0; 1gl. Let xi 2 f0; 1gl.

EK EK EK
x3

EK

x2x1 xn
sig(x1k � � � kxn)Exer
ise. Break it.



The atta
k used the fa
t that when 
omputing the MAC ofa message, we sort of also 
ompute the MACs of its su�xes.The 
onstru
tion would have been se
ure if the length ofmessages had been �xed.For variable-length messages x, we may start by 
omputingx0 = �(x)where � is a su�x-free fun
tion, and then apply the CBC-MAC 
onstru
tion to x0.Does it yield a se
ure MAC?That depends on �.



It is not su�
ient to de�ne�(x1 � � � xn) = (x1; : : : ; xn; n)where x1; : : : ; xn 2 f0; 1gl.



Let b; b0; 
 2 f0; 1g�. ThensigK(b) = EK(1�EK(b))sigK(b0) = EK(1�EK(b0))

sigK(bk1k
) = EK(3� EK(
� EK(1�EK(b)))) =EK(3�EK(
� sigK(b))) =EK(3� EK(
�EK(
� sigK(b)� sigK(b0)� sigK(b0))) =EK(3�EK(
�EK(
�sigK(b)�sigK(b0)�EK(1�EK(b0)))) =sigK(b0k1k
� sigK(b)� sigK(b0))



If sig denotes the ordinary CBC-MAC (without �) thenthe following variants are also se
ure wrt. variable-lengthmessages:� sigK(nkx1k � � � kxn);� sig sigK(n)(x1k � � � kxn);� sigK0(sigK(x1k � � � kxn)).The last one is attra
tive in that we do not have to knowthe length n of the message in advan
e.



Birthday atta
k (for CBC-MAC with message length n � l)Let a1; : : : ; am 2 f0; 1gl be distin
t. Let r1; : : : ; rm 2 f0; 1glbe independent, uniformly distributed random variables.If m � 2l=2 then with signi�
ant probability there exist iand j, su
h that i 6= j and EK(ai)� ri = EK(aj)� rj.ThensigK(aik(ri�
)kx3k � � � kxn) = sigK(ajk(rj�
)kx3k � � � kxn)for any 
; x3; : : : ; xn 2 f0; 1gl. These two messages di�erbe
ause ai 6= aj.



How to verify that EK(ai)� ri = EK(aj)� rj?Che
k that sigK(aikrik0(n�2)l) = sigK(ajkrjk0(n�2)l).(Our adversary is a
tive)



XOR-MAC:� Split the message into blo
ks� (do something with ea
h blo
k)� En
rypt the blo
ks� XOR the result together.Simplest version:sigK(x1k � � � kxn) = EK(x1)� � � �EK(xn)

Exer
ise. Break it.



Next version:Let m < l where l was the blo
k size. Let i denote therepresentation of the integer i as a m-bit string.Split the message x to (l�m)-bit blo
ks x1; : : : ; xn.sigK(x1k � � � kxn) = EK(1kx1)�EK(2kx2)�� � ��EK(nkxn)

Exer
ise. Break it.



A se
ure version:� Split the message x to (l�m�1)-bit blo
ks x1; : : : ; xn.� Generate a random r 2 f0; 1gl�1.� Let� = EK(0kr)�EK(1k1kx1)�EK(1k2kx2)�� � ��EK(1knkxn) :

� sigK(x) = (r; � ).Exer
ise. How does the veri�
ation algorithm look like?Obviously we may not reuse a generated r.



A universal one-way hash fun
tion (universaalne ühesuu-naline paiskfunktsioon) is a �nite family H of fun
tionsh : D �! R (for 
ertain sets D and R), su
h that� for every x; x0 2 D, where x 6= x0� for a uniformly randomly 
hosen h from H� Pr[h(x) = h(x0)℄ 6 1=jRj.Usually, there are keys to refer to the elements of H.

H = fhK jK 2 KHg



Let EK : f0; 1gl ! f0; 1gl be a blo
k 
ipher, let the set ofkeys be KE.Let H be a universal one-way hash fun
tion from f0; 1gnto f0; 1gl (n > l).The following is a se
ure MAC:� P = f0; 1gn;� A = f0; 1gl;� K = KH�KE;� sigK1;K2(x) = EK2(hK1(x)).



Example of a universal one-way hash fun
tion from D toR:� Let D be a �nite �eld.� If D = f0; 1gn, then 
onsider D as the set of poly-nomials of degree less than n over Z2, modulo someirredu
ible n-th degree polynomial.� Let g : D ! R be a mapping, su
h that the sets g�1(r)for r 2 R all have the same size.� If R = f0; 1gl, where l 6 n, then pi
k 
ertain l bitsout of n.� Let K = D� �D.� Let ha;b(x) = g(ax+ b).



En
ryption and MAC together are used to 
reate se
ure(
on�dential and authenti
) 
hannels.Initially two parties ex
hange the en
ryption key Ke andthe MAC key Ka.Then, to transmit x, one sends sigKa(EKe(x)).Certain other ways, e.g. (EKe(x); sigKa(x)) and (EKe(sigKa(x))are inse
ure in general, but se
ure for spe
i�
 MACs.



There exist blo
k 
iphers' modes of operation that provideboth 
on�dentiality and authenti
ity.Use a single key.They need n + O(1) blo
k 
ipher invo
ations to en
ryptand authenti
ate a n-blo
k message.See http://www.cs.ucdavis.edu/~rogaway/ocbAlso see sign
ryption for asymmetri
 primitives giving both
on�dentiality and integrity.


