
So far, we have only onsidered passive adversaries.They keep their ears open and mouth shut.For example, if� A wants to send a seret message to B, and� B thus sends his publi key to A,then the adversary does not attempt to replae that publikey while in transit.An ative adversary might replae that publi key by itsown, then he an read what A has enrypted.



Digital signatures are a basi means to verify the soure ofa message.A digital signature sheme is a tuple (P;A;K; S;V), where� P is the set of possible messages;� A is the set of possible signatures;� K is the set of possible pairs of signature and veri�a-tion keys (or �seret� and �publi� keys);� S ontains a signature generation algorithm sigK foreah signature key;� V ontains a signature veri�ation algorithm verK foreah veri�ation key.



For eah (Ks;Kv) 2 K:� sigKs : P �! A;� verKv : P�A �! ftrue; falseg.� For eah message m 2 P:verKv(m; sigKs(m)) = true :The algorithms in S and V must be e�ient.Given m and Kv, it should be infeasible to generate suhs, that verKv(m; s) = true.A signature sheme is with appendix (lisaga) if verKv(m; s)atually uses m. Otherwise it is with message reovery(s~onumit taastav).



RSA signature sheme.Generate large primes p, q. Let n = pq. Let e 2 Z�'(n). Letd = e�1 (mod '(n)).Signature key: (n; d). Veri�ation key: (n; e). P = A = Zn.sig (n;d)(m) = md mod nver (n;e)(m; s) = �se � m (mod n)�



Attaks:Signatures to random messages The advesary may ta-ke an s 2 A and ompute m = se mod n. Thenver (n;e)(m; s) = true.Existential forgery.Homomorphi properties If ver (n;e)(m1; s1) = true andver (n;e)(m2; s2) = true then alsover (n;e)(m1m2 mod n; s1s2 mod n) = true :

Both attaks an be thwarted by adding redundany tomessages.



How to sign arbitrary messages?Use ollision-resistant hash funtions.A hash funtion is a mapping h : f0; 1g� �! f0; 1gn forsome small n (typially 160 6 n 6 512). It is� one-way if given y 2 f0; 1gn it is infeasible to �nd anyx, suh that h(x) = y;� 2nd preimage resistant if given x it is infeasible to �ndany x0 6= x, suh that h(x) = h(x0);� ollision-resistant if it is infeasible to �nd any (x; x0),x 6= x0, suh that h(x) = h(x0).Note that we said �resistant� (kindel), not �free�.



There exist hash funtions whih are (were) believed to beollision-resistant.Collision-resistant hash funtions an be onstruted fromseure symmetri enryption systems.There exist hash funtions whih are ollision-resistant un-der standard number-theoreti omplexity assumptions.We take a look at them in the next (or urrent?) leture.A ollision-resistant hash funtion is also one-way.



Fix a ollision-resistant hash funtion h whose output lengthis smaller than the length of the RSA modulus.RSA signature generation is thensig (n;d)(m) = h(m)d mod nand veri�ation isver (n;e)(m; s) = �se � h(m) (mod n)� :The attaks desribed before would require inverting h to�nd a suitable message to go with the generated signature.



ElGamal signature sheme.Fix a group G with hard disrete logarithm problem, m =jGj, g is a generator of G. We need a ollision-resistanthash funtion h : f0; 1g� �! Zm.

P = f0; 1g�. A = G� Zm.Key generation: randomly generate � 2 Zm. � is the sig-nature key and � = g� is the veri�ation key.To sign, generate a random r 2 Z�m.sig�(m) = let � = gr in (�; (h(m)� �h(� ))r�1 mod m)ver�(m; (�; s)) = ��h(�) � � s = gh(m)�



Signature veri�ation works:

ver�(m; (gr; (h(m)� �h(gr))r�1)) =h�h(gr) � (gr)h(m)��h(gr))r�1 = gh(m)i

and� �h(gr) = g�h(gr);� (gr)h(m)��h(gr))r�1 = gh(m)=g�h(gr).



Seurity onsiderations:The adversary annot forge the signature by generating arandom r and omputing � = gr.Indeed, the adversary must then omputes = (h(m)� �h(� ))r�1 mod mand if he sueeds, he an also �nd �. This is equivalentto �nding the disrete logarithm logg �.



Seurity onsiderations:The random r must be kept seret. Otherwise the seretkey � will be found froms = (h(m)� �h(� ))r�1 mod mHere m is the message and (�; s) is the signature.� = (h(m)� rs)h(� )�1 (mod m)



Seurity onsiderations:Di�erent signatures must use di�erent random r-s. Indeed,if m1 and m2 have signatures (�; s1) and (�; s2), where � =gr and s1 = (h(m1)� �h(� ))r�1s2 = (h(m2)� �h(� ))r�1then we have a simple system of equations with two equa-tions and two unknowns (r and �).We get r = (h(m1)�h(m2)) �(s1�s2)�1 (mod m) and �nd� as in the previous slide.



If G = Z�p (and then m = p� 1) then h(� ) is usually takento be � . (or � mod (p� 1)). In this asesig�(m) = let � = gr in (�; (h(m)� �� )r�1 mod (p� 1))ver�(m; (�; s)) = ��� � � s � gh(m) (mod p)� ^ �1 6 � 6 p� 1�



Seurity onsiderations:The hek 1 6 � 6 p� 1 is neessary. Otherwise. . .Suppose that the adversary knows the signature (�; s) forthe message m. It wants to sign the message m0. Let� u = h(m0) � (h(m))�1 (mod p� 1);� s0 = su mod (p� 1);� � 0 2 Zp(p�1) satis�es (use CRT to �nd it)8<: � 0 � �u (mod p� 1)� 0 � � (mod p)Then (� 0; s0) will be aepted as a signature of m0.



Indeed,
�� 0 � � 0s0 � ��u � � su =(�� � � s)u � (gh(m))h(m0)h(m) = gh(m0) (mod p)

If 1 6 � 0 6 p � 1 then � = �u, hene u = 1 and h(m) =h(m0). If m 6= m0 then we have a ollision.



Seurity onsiderations: If P = Z�p and h(m) = m thenexistential forgeries are possible.The adversary has to generate (m; �; s), suh that�� � � s � gm (mod p) :It generates u 2 Z , v 2 Z�p�1 and de�nes � = gu�v,s = ��v�1 (mod p� 1) and m = su mod (p� 1). Then�� � � s = �� (gu�v)��v�1 = ��g�u�v�1��v�v�1 = g�u�v�1and �u�v�1 = us � m (mod p� 1).



E�ieny onsiderations. The signing with ElGamal is fast(requires just a ouple of multipliations).� � = gr an be preomputed.To verify, we must ompute �h(�), � s and gh(m) � threeexponentiations.Fortunately, omputing ae11 � � � aekk (produt of powers) anbe done faster than k exponentiations.We an then ompute �h(�) � � s � (g�1)h(m) and ompare itto 1 2 G.



We want to ompute ae11 � � � aekk .Let ei =Pnj=0 eij2j, where eij 2 f0; 1g and n > maxi log2 ei.De�ne bn+1 = 1 andbr = b2r+1 � Y16i6keir=1 ai :Then br = kYi=1 a
nPj=r eij2j�ri :

And b0 is the produt that we are looking for.



We preompute all produts Qi2X ai for X � f1; : : : ; kg.This requires 2k � k � 1 multipliations.Computing br from br+1 requires two multipliations (so-metimes one). Computing b0 requires � 2n multipliations(without preomputation).A usual exponentiation requires n to 2n multipliations.If k is small, suh that also 2k is small then the simulta-neous exponentiation is almost as fast as a simple expo-nentiation.



Digital signature algorithm.Proposed by the U.S. National Institute of Standards andTehnology.A simple variant of ElGamal signature sheme in a sub-group of Z�p.Let q be a 160-bit prime number and p a 512-(or 768-, or1024-)bit prime number, suh that q j (p� 1).I.e. we onsider only numbers of the form 2tq + 1 for sui-tably sized t when doing the prime number generation forp.



Let g 2 Z�p have the order q. Let G be generated by g.I.e. raise a generator of Z�p to the power p�1q .The group G should have hard-to-ompute disrete loga-rithms.Indeed, it is too large to use generi algorithms, and p istoo large to use algorithms spei�ally for Z�p.The quantities q, p and g may global, or may be hosen foreah key separately.Key generation: randomly generate � 2 Zq . � is the signa-ture key and � = g� 2 Z�p is the veri�ation key.



To sign m, hoose a random r 2 Z�q .� Let � = (gr mod p) mod q 2 Zq .� Let s = r�1(h(m) + �� ) mod q 2 Zq .� Return (�; s).To verify that (�; s) is a signature of m,� Verify that 0 < �; s < q.� Let u1 = s�1h(m) mod q and u2 = �s�1 mod q.� Verify that � = (gu1�u2 mod p) mod q.Exerise. Verify that signature veri�ation works, unless� = 0 or s = 0, whih should our extremely rarely.



A hash funtion is a funtion h : f0; 1g� ! f0; 1gn for some�xed n, suh that h is easy to ompute.A ompression funtion is a funtion h : f0; 1gm ! f0; 1gnfor some �xed m and n, suh that m > n and h is easy toompute.Before we listed the properties �one-wayness�, �2nd prei-mage resistane� and �ollision-resistane�.



Theorem. If a hash or ompression funtion h : X ! Z(here jXj > 2jZj) is not one-way, then it is not ollision-resistant.
Proof. Let A be an algorithm, suh that A(y) returns somex 2 h�1(y).I.e. for any y 2 Z, the probability Pr[h(A(y)) = y℄ is sig-ni�ant.To generate a ollision,� pik a random x 2 X.� Let x0 = A(h(x)).� If x 6= x0 then output (x; x0), else fail.The probability of failure is jZj=jXj 6 1=2.



We required from A that for all y 2 Z, the probabilityPr[h(x) = y jx A(y)℄is signi�ant.Alternatively, we might have required that justPr[h(x) = y j y 2R Z; x A(y)℄is signi�ant.The non-existene of suh A is a more reasonable de�nitionof one-wayness. . .But then the theorem on previous slide no longer holds.



Indeed, let h : f0; 1g� ! f0; 1gn be a ollision-resistanthash funtion.De�ne h0 : f0; 1g� ! f0; 1gn+1 by

h0(x) = 8<:1 jj x; if jxj = n0 jj h(x); otherwise :then h0 is ollision-resistant, but for half of the values y 2f0; 1gn+1, it is very easy to �nd an element of h0�1(y).



A generi way to �nd a ollision of a hash funtion h is toompute the values h(x) for random x-s until a ollision isfound.If the values h(x) are n bits long then O(2n=2) attemptsare neessary, by the birthday paradox.This attak is alled the birthday attak.That's why the output of modern hash funtions (MD5,SHA-1, et.) are at least 128, and preferably 160 bits long.



A generalization of the birthday paradox: let X be a set,jXj = n. Let x1; : : : ; xk and y1; : : : ; yl be mutually indepen-dent uniformly distributed random variables over X. Theprobability that there exist suh i and j, that xi = yj, isabout
1� kYi=1

lYj=1 n� 1n = 1� (1� 1n)kl > 1� e� kln > 12

if e� kln 6 12 , i.e. kl 6 n ln 2 = O(n).



Let x and x0 be two meaningful douments. The attakermay hoose n=2 �plaes� in both of them where it mayor may not make a modi�ation that does not hange themeaning of the doument.We get 2n=2 variants of the doument x and 2n=2 variants ofthe doument x0. With signi�ant probability, h(�x) = h( �x0)for some variant �x of x and �x0 of x0.(Yuval's attak.)



Assume that h : f0; 1gm ! f0; 1gn is a ollision-resistantompression funtion. Let r = m� n. We an onstrut aollision-resistant hash funtion h� : f0; 1g� ! f0; 1gn asfollows.Let � : f0; 1g� ! (f0; 1gr)� be an enoding funtion thatis� easily omputable and easily invertible;� su�x-free � if x 6= x0 then neither of �(x) and �(x0)is a su�x of the other.Exerise. Construt suh �. Try to keep the inrease inlength as small as possible.



Let x 2 f0; 1g� and let (x1; : : : ; xt) = �(x), wherex1; : : : ; xt 2 f0; 1gr.Let H0 be the string of n bits 0. Construt H1; : : : ; Ht asfollows: Hi = h(Hi�1 jj xi) :We de�ne h�(x) = Ht.This is alled the Merkle-Damgård onstrution.



Theorem. If h is a ollision-resistant ompression funtionthen h� is a ollision-resistant hash funtion.

Proof. We show how to e�iently onstrut a ollision ofh from a ollision of h�.Let x = x0 but h�(x) = h�(x0). Let (x1; : : : ; xt) = �(x) and(x01; : : : ; x0t0) = �(x0). Assume w.l.o.g. that t 6 t0.ComputeH0; : : : ; Ht (from �(x)) andH 00; : : : ; H 0t0 (from �(x0)).We have Ht = H 0t0. There are two ases:1. There exists an i 2 f1; : : : ; tg, suh that Ht�i 6= H 0t0�i.Let i be the smallest with suh property.2. Ht = H 0t0, Ht�1 = H 0t0�1,. . . , H0 = H 0t0�t.



In the �rst ase we have� Ht�i jj xt�i+1 6= H 0t0�i jj x0t0�i+1;� h(Ht�ijjxt�i+1) = Ht�i+1 = H 0t0�i+1 = h(H 0t0�ijjx0t0�i+1).a ollision for h.In the seond ase there are again two ases:1. There exists an i 2 f0; : : : ; t�1g, suh that xt�i 6= x0t0�i.Let i be the smallest with suh property.2. xt = x0t0, xt�1 = x0t0�1,. . . , x1 = x0t0�t+1.



In the �rst ase we have� Ht�i�1 jj xt�i 6= H 0t0�i�1 jj x0t0�i;� h(Ht�i�1 jj xt�i) = Ht�i = H 0t0�i = h(H 0t0�i�1 jj x0t0�i).a ollision for h.In the seond ase �(x) is a su�x of �(x0). This is impos-sible by the onstrution of �.



Chaum - van Heijst - P�tzmann ompression funtion isde�ned as follows:Let p 2 P be a strong prime (i.e. q = p�12 is also a prime).Let g be a generator of Z�p and let h be a random elementof Z�p.De�ne h : Zq � Zq ! Z�p by
h(x; y) = gxhy mod p :



Theorem. If the disrete logarithm problem is hard in Z�pthen h is ollision-resistant.

Proof. Assume that we know a ollision for h. Then we an�nd z = logg h as follows.Let h(x1; y1) = h(x2; y2), but (x1; y1) 6= (x2; y2). We havegx1�x2 � hy2�y1 (mod p)or x1 � x2 � z(y2 � y1) (mod p� 1)We solve this ongruene for z (it must have at least onesolution) and try out all possible solutions (raise g to thatpower and ompare the result to h).



The proedure on the previous slide fails if the ongruenex1 � x2 � z(y2 � y1) (mod p� 1)has too many solutions.It has gd(y2 � y1; p � 1) = gd(y2 � y1; 2q) solutions. Asy1; y2 < q, then also jy2�y1j < q and this gd an be either1 or 2.
Unfortunately, the Chaum - van Heijst - P�tzmann omp-ression funtion is slow.



Compression funtions may be onstruted from blok ip-hers.Let a blok ipher be given, with P = K = C = f0; 1gn forsome n. Then we an onstruth : f0; 1gn � f0; 1gn ! f0; 1gn as follows. h(x1; x2) is
Ekeyplaintextx1x2x1 � x2onst.I.e. there are 64 possibilities. Most of them are not ollision-resistant.



Among those 64 funtions, there are� 12 ollision-resistant funtions;� 8 funtions, whih are not ollision resistant, but ahash funtion, onstruted from it using the Merkle-Damgård onstrution, is seure;� 44 �useless funtions�.



The seurity proof assumes that E is a randomly hosenblok ipher.Let E be the set of all funtions E of typef0; 1gn � f0; 1gn ! f0; 1gnsuh that E(k; �) is a permutation of f0; 1gn for eah k 2f0; 1gn.The seurity proof assumes that E is uniformly randomlyhosen from E.This is a strong assumption.



That also means that the attaker may not �look inside�E. It only has orale aess to E and D (deryption).Collision-resistane of a onstrution means that� for any e�ient algorithm A� whih may all E and D, but has no further des-ription of them;� for a randomly hosen E� whih also determines D� the probability that AE;D outputs a ollision of h isnegligible.



These 12 ollision-resistant ompression funtions areE(x1; x2)� x2 E(x1 � x2; x2)� x2E(x1; x1 � x2)� x2 E(x1; x2)� x1 � x2E(x1 � x2; x2)� x1 E(x1; x1 � x2)� x1 � x2and six others, where we swap x1 and x2.



These 8 non-ollision-resistant ompression funtions gi-ving ollision-resistant hash funtions areE(x1 � x2; x2)�  E(x1 � x2; x2)� x1 � x2E(x2; x1)�  E(x1 � x2; x1)� E(x2; x1)� x2 E(x1 � x2; x1)� x1 � x2E(x2; x1 � x2)�  E(x2; x1 � x2)� x2 .In Merkle-Damgård onstrution, x1 is the aumulatedvalue and x2 the next message blok.



Existing dediated hash funtions (MD5, SHA-1, RIPEMD,their longer versions) are also onstruted by Merkle-Damgårdonstrution. One has to speify� the enoding (or padding) funtion �;� the ompression funtion.



In the symmetri setting we have seen enryption.In the asymmetri setting we have seen enryption andsigning.What is the analogue to digital signatures in the symmetrisetting?Message authentiation odes (MACs).� Two parties share a seret key.� One party an use that key to prove to the other onethat the message was not modi�ed during transit.� This is hopefully more e�ient than signing the mes-sage.



A MAC has the following omponents� Plaintext spae P;� Authentiation ode spae A;� Key spae K;� tagging algorithm sig : K� P! A;� veri�ation algorithm ver : K� P�A! ftrue; falseg.verK(m; sigK(m)) = truemust hold.If sig is deterministi then ver is already spei�ed, too.Seurity � the adversary (not knowing the key) annotprodue message-tag pairs that are aepted by ver .



CBC-MAC: Let a blok ipher E be given. Let l be theblok size.
K of MAC is K of the blok ipher.

P = (f0; 1gl)�. A = f0; 1gl. Let xi 2 f0; 1gl.

EK EK EK
x3

EK

x2x1 xn
sig(x1k � � � kxn)Exerise. Break it.



The attak used the fat that when omputing the MAC ofa message, we sort of also ompute the MACs of its su�xes.The onstrution would have been seure if the length ofmessages had been �xed.For variable-length messages x, we may start by omputingx0 = �(x)where � is a su�x-free funtion, and then apply the CBC-MAC onstrution to x0.Does it yield a seure MAC?That depends on �.



It is not su�ient to de�ne�(x1 � � � xn) = (x1; : : : ; xn; n)where x1; : : : ; xn 2 f0; 1gl.



Let b; b0;  2 f0; 1g�. ThensigK(b) = EK(1�EK(b))sigK(b0) = EK(1�EK(b0))

sigK(bk1k) = EK(3� EK(� EK(1�EK(b)))) =EK(3�EK(� sigK(b))) =EK(3� EK(�EK(� sigK(b)� sigK(b0)� sigK(b0))) =EK(3�EK(�EK(�sigK(b)�sigK(b0)�EK(1�EK(b0)))) =sigK(b0k1k� sigK(b)� sigK(b0))



If sig denotes the ordinary CBC-MAC (without �) thenthe following variants are also seure wrt. variable-lengthmessages:� sigK(nkx1k � � � kxn);� sig sigK(n)(x1k � � � kxn);� sigK0(sigK(x1k � � � kxn)).The last one is attrative in that we do not have to knowthe length n of the message in advane.



Birthday attak (for CBC-MAC with message length n � l)Let a1; : : : ; am 2 f0; 1gl be distint. Let r1; : : : ; rm 2 f0; 1glbe independent, uniformly distributed random variables.If m � 2l=2 then with signi�ant probability there exist iand j, suh that i 6= j and EK(ai)� ri = EK(aj)� rj.ThensigK(aik(ri�)kx3k � � � kxn) = sigK(ajk(rj�)kx3k � � � kxn)for any ; x3; : : : ; xn 2 f0; 1gl. These two messages di�erbeause ai 6= aj.



How to verify that EK(ai)� ri = EK(aj)� rj?Chek that sigK(aikrik0(n�2)l) = sigK(ajkrjk0(n�2)l).(Our adversary is ative)



XOR-MAC:� Split the message into bloks� (do something with eah blok)� Enrypt the bloks� XOR the result together.Simplest version:sigK(x1k � � � kxn) = EK(x1)� � � �EK(xn)

Exerise. Break it.



Next version:Let m < l where l was the blok size. Let i denote therepresentation of the integer i as a m-bit string.Split the message x to (l�m)-bit bloks x1; : : : ; xn.sigK(x1k � � � kxn) = EK(1kx1)�EK(2kx2)�� � ��EK(nkxn)

Exerise. Break it.



A seure version:� Split the message x to (l�m�1)-bit bloks x1; : : : ; xn.� Generate a random r 2 f0; 1gl�1.� Let� = EK(0kr)�EK(1k1kx1)�EK(1k2kx2)�� � ��EK(1knkxn) :

� sigK(x) = (r; � ).Exerise. How does the veri�ation algorithm look like?Obviously we may not reuse a generated r.



A universal one-way hash funtion (universaalne ühesuu-naline paiskfunktsioon) is a �nite family H of funtionsh : D �! R (for ertain sets D and R), suh that� for every x; x0 2 D, where x 6= x0� for a uniformly randomly hosen h from H� Pr[h(x) = h(x0)℄ 6 1=jRj.Usually, there are keys to refer to the elements of H.

H = fhK jK 2 KHg



Let EK : f0; 1gl ! f0; 1gl be a blok ipher, let the set ofkeys be KE.Let H be a universal one-way hash funtion from f0; 1gnto f0; 1gl (n > l).The following is a seure MAC:� P = f0; 1gn;� A = f0; 1gl;� K = KH�KE;� sigK1;K2(x) = EK2(hK1(x)).



Example of a universal one-way hash funtion from D toR:� Let D be a �nite �eld.� If D = f0; 1gn, then onsider D as the set of poly-nomials of degree less than n over Z2, modulo someirreduible n-th degree polynomial.� Let g : D ! R be a mapping, suh that the sets g�1(r)for r 2 R all have the same size.� If R = f0; 1gl, where l 6 n, then pik ertain l bitsout of n.� Let K = D� �D.� Let ha;b(x) = g(ax+ b).



Enryption and MAC together are used to reate seure(on�dential and authenti) hannels.Initially two parties exhange the enryption key Ke andthe MAC key Ka.Then, to transmit x, one sends sigKa(EKe(x)).Certain other ways, e.g. (EKe(x); sigKa(x)) and (EKe(sigKa(x))are inseure in general, but seure for spei� MACs.



There exist blok iphers' modes of operation that provideboth on�dentiality and authentiity.Use a single key.They need n + O(1) blok ipher invoations to enryptand authentiate a n-blok message.See http://www.cs.ucdavis.edu/~rogaway/ocbAlso see signryption for asymmetri primitives giving bothon�dentiality and integrity.


