
Alie wants to aess some resoures ontrolled by Bob.Bob is willing to provide them to Alie, but not to everyo-ne.Alie has to onvine Bob that she really is Alie.How?This is the identi�ation problem.



Passwords � the simplest sheme.Alie and Bob have agreed on a ommon bit-string M .Alie sends M to Bob. Bob veri�es that it really reeivedM and grants aess to Alie.



Problems:� An eavesdropper may learn M and impersonate Alieafterwards.� Bob has to storeM somewhere. If Bob's omputer getsompromised then M has leaked.� Alie may not use M to identify herself to Charlie.� Beause Bob ould impersonate her.� And if Bob's omputer is ompromised, then theattaker an impersonate her also to Charlie.� If M is human-memorable then it typially has lowentropy.



To prevent the leakage ofM when Bob's omputer is omp-romised, Bob only stores h(M), where h is a one-way fun-tion.The low entropy of M still allows it to be brute-fored.If Bob has a database of h(M)-s for many di�erent usersthen ompromising him is espeially attrative.To redue attrativeness, Bob stores not h(M), but(R;h(R jjM)) for a random string R.� di�erent R-s for di�erent users.



IfM has high entropy, it annot be memorable to humans.It may be stored on a smart-ard instead.This smart-ard may require a PIN to ativate. It may lokafter a ouple of false PINs.



If Alie always sends the same M to Bob then the eaves-dropper an impersonate her.Use one-time passwords or randomization.The randomness has to ome from Bob's side.Challenge-response protool:� Bob generates a hallenge x and sends it to Alie.� Alie responds by omputing something from x andM , and sending it to Bob.� Bob veri�es that the message sent by Alie was reallyomputed from x and M in the presribed way.



For example, let E be the enryption funtion of somesymmetri ryptosystem.� Bob generates a bit-string x and sends it to Alie. Alsoomputes yB = EM(x).� Alie omputes yA = EM(x) and sends it to Bob.� Bob veri�es that yA = yB.Problems:� Alie annot use M to identify herself to Charlie.� The attaker impersonating Bob an mount a hosen-plaintext attak against M .



Let E and D be the enryption and deryption funtionsof some asymmetri ryptosystem.Let Ms be Alie's seret key and Mp Alie's publi key.� Bob generates a bit-string x, omputes y = EMp(x)and sends it to Alie.� Alie omputes x0 = DMs(y) and sends it to Bob.� Bob veri�es that x = x0.Good things:� Alie never reveals Ms. She merely proves her know-ledge of Ms.� Hene Alie an use Ms to identify herself to Charlie.



An attaker impersonating Bob an mount a hosen-iphertextattak against Ms.In general, Bob (or someone else) is able to make Alieompute something that he was not able to ompute him-self.It would be nie if Bob only learned that Alie knows theseret and not anything else.What does �does not learn anything else� mean?



Fiat-Shamir identi�ation sheme.� Key generation: Alie generates two large primes p, qand omputes n = pq. Alie generates a random s 2 Z�nand omputes v = s2 mod n.� Publi key: (n; v). Seret key: (n; s).� Protool:Commitment Alie generates a random r 2 Znnf0g,omputes x = r2 mod n, and sends x to Bob.Challenge Bob generates a random b 2 f0; 1g andsends it to Alie.Response Alie sends y = rsb mod n to Bob.Veri�ation Bob aepts if y2 = xvb.



If Alie knows s then she an always make Bob aept byomputing y orretly.If the adversary an ompute s from (n; v) then he an alsofator n. This is supposedly intratable.How suessfully an the adversary impersonate Alie wit-hout knowing s?The adversary annot respond orretly to both hallenges(0 and 1).If he knows both r and rs then he an ompute s.



If the adversary an orretly guess b that Bob is going tosend then he may� Choose y 2 Znnf0g and ompute x = y2 � v�b mod n.Use that x as the ommitment.� y will then be the orret response.Hene the adversary an fool Bob only with probability50%.Exeuting the protool several times will exponentially di-minish that probability.



What does Bob (or an adversary) �learn� from an exeutionof that protool?Well, whatever. . .But the �new information� is ertainly upper-bounded by� Bob's random hoies;� the trae (x; b; y) of the protool.



Here (x; b; y) is generated aording to a distribution where� x is a random quadrati residue modulo n;� b is a random bit;� Its distribution may depend on x.� I.e. Bob may be atively trying to determine Alie'sseret s.� y is a square root of xvb.� y = rsb is a random element of Znnf0g beause ris a random element of Znnf0g and s is invertiblein Zn.



Bob (or anyone else) an sample this distribution himself:� Generate a random bit b� by tossing a fair oin.� Generate a random y 2 Znnf0g.� Set x = y2v�b� mod n.� Generate the random bit b aording to the distribu-tion that depends on x.� If b 6= b� then start over.



We see that all �new information� that Bob ould obtainby running the protool ould have been generated by Bobhimself, without the help of Alie.Hene there really was no new information (beside the fatthat Alie knows the seret key).We say that this protool has the property of zero-knowledge(nullteadmus).This was an example of a zero-knowledge proof of know-ledge.



Let G be a yli group where taking disrete logarithmsis hard, let g be a generator of G and m = jGj. Let Aliegenerate a 2 Zm and publish h = ga.Alie an prove her knowledge of a to Bob as follows:Commitment Alie generates a random r 2 Zm, ompu-tes x = gr and sends x to Bob.Challenge Bob generates a random b 2 f0; 1g and sendsit to Alie.Response Alie sends y = r + ab to Bob.Veri�ation Bob aepts if gy = xhb.Exerise. Prove that the protool works, is seure, andhas the zero-knowledge property.



Several rounds of the protool have to be run, suh thatthe probability of Alie not heating is high enough.They may be run one after another or in parallel.Or an they?Exerise. What is the di�erene between running roundsone after another and running them in parallel?



Reall the simulation (for a single round):� Generate b� 2 f0; 1g by tossing a fair oin.� . . .� Obtain b 2 f0; 1g; its distribution depends on thingsthat happened above.� If b 6= b� then start over.Probability of sueeding (not starting over): 1=2.To simulate k rounds, we have to do the work above app-roximately 2k times.



For k rounds the simulation would be� Generate b�1; : : : ; b�k 2 f0; 1g by tossing fair oins.� . . .� Obtain b1; : : : ; bk 2 f0; 1g; their distribution dependson things that happened above.� If 9i : bi 6= b�i then start over.Probability of sueeding: 1=2k.Exponentially small in k.To simulate k rounds, we have to do the work above app-roximately 2k times.



We have seen zero-knowledge proofs of knowledge of fa-torization and disrete log.Proof of knowledge , identi�ation sheme.We also saw a non-zero-knowledge proof of knowledge (ofa seret key of some asymmetri ryptosystem).



Shnorr's identi�ation sheme. Let p be a 1024-bit primenumber, suh that disrete log. in Z�p is hard and q j (p�1)is a 160-bit prime number. Let g 2 Z�p have the order q.Alie's seret key: a 2 Zq . Publi key: h = g�a.Commitment Alie piks random r 2 Zq , sends x = grto Bob.Challenge Bob hooses a random k 2 f1; : : : ; 240g, sendsit to Alie.Response Alie sends y = (r + ak) mod q to Bob.Veri�ation Bob aepts if x = gyhk.



Consider now the ase where the Prover� knows that a ertain laim holds;� knows its proof;� wants to onvine Veri�er that the laim holds;� does not want to reveal anything else.For example, Prover wants to onvine Veri�er that (g; h; y1; y2)is a Di�e-Hellman tuple (here g; h; y1; y2 2 G for somegroup G, m = jGj).I.e. 9x 2 Zm (whih Prover knows) suh that y1 = gx andy2 = hx.



Reall our �voting sheme�:� There are a number of voters V1; : : : ; Vk.� The voter Vi has a hoie ei 2 f0; 1g.� The Tallier has an ElGamal publi key h. He knows a,suh that ga = h.� The voter Vi generates a random ri and publishes (gri ; geihri).� The votes are multiplied, resulting in (gR; gEhR) =(1; 2), where E =Pi ei.� The Tallier derypts, and publishes gE. Brute-foringreveals E.Tallier ated orretly if (g; 1; h; 2g�E) is a Di�e-Hellmantuple. The ommon exponent is a.



Prover and Veri�er know G, m, (g; h; y1; y2).Prover knows x, suh that gx = y1, hx = y2.Commitment Prover randomly piks r 2 Zm and sendsA = gr and B = hr to Veri�er.Challenge Veri�er sends a random bit b 2 f0; 1g to Pro-ver.Response Prover sends s = (r + bx) mod m to Veri�er.Veri�ation Veri�er aepts if A = gsy�b1 and B = hsy�b2 .Exerise. Prove that the protool works, is seure, andhas the zero-knowledge property.



The protool may be understood as follows:The Prover made the following laims:0. A andB are onstruted orretly (i.e. logg A = loghB).1. If A and B are onstruted orretly then logg y1 =logh y2.� y1 = gs�logg A and y2 = hs�loghB = hs�logg A.The Veri�er will verify one of these laims, but the Proverdoes not know beforehand, whih one.



Let us play the following game. We both hoose a bit. Iftheir xor is 1 then you win, otherwise I win.� So, what is your bit?� . . .� Tough luk, so is mine.This seems to be unfair. . .



� So, what is your bit?� My bit? It is in that sealed envelope. What is yours?� My bit is. . .� OK, you may open the envelope now.This is fair.The envelope was an example of bit ommitment (bitikin-nistus).



A bit ommitment is a ryptographi primitive with threeoperations:� Key generation;� Committing � takes the seret key and the bit to beommited, and produes the ommitment and the re-vealing information.� Verifying � takes the publi key, ommitment, the bitthat was allegedly ommited, and revealing informa-tion, and either aepts or rejets.



A bit ommitment must have two properties:Conealing The publi key and ommitment should notreveal the ommitted bit.Binding It must be impossible to produe a ommitmentthat an be opened both ways.



Historially, enryption has been used for ommitment.� To ommit, generate a new key K and a random stringR.� Commitment of b is EK(f(b;R)) for some f that om-bines b and R.� Revealing information is (K;R).� Veri�ation: reompute EK(f(b;R)).Conealing is obvious. Binding depends on E and f .



Bit-ommitment based on quadrati residuosity:Key generation Let p; q 2 P, n = pq, m 2 Zn, suh that�mp � = �mq � = �1. (n;m) is the publi key.� Then �mn� = 1, but m is a quadrati non-residuemodulo n.Committing Choose a random x 2 Zn. The ommitmentis  = mbx2 mod n. The revealing information is x.Verifying Chek whether  � mbx2 (mod n).



The sheme is unonditionally binding beause the om-mitments of 0 are quadrati residues, and the ommitmentsof 1 quadrati non-residues.It is believed that distinguishing quadrati residues fromnon-residues is hard. Under this assumption, the sheme isonealing.Exerise. n and m are generated by the Prover. Whathappens if the Prover lets m to be a quadrati residue?



Another one:Key generation Let p; q 2 P, n = pq. Committer mustnot know p and q (reipient may know them). Let mbe a quadrati residue modulo n. (n;m) is the publikey.Committing Choose a random x 2 Zn. The ommitmentis  = mbx2 mod n. The revealing information is x.Verifying Chek whether  � mbx2 (mod n).



Conealing is unonditional � the possible ommitmentsare the same for 0 and 1.If a ommitter ould open  as both 0 and 1, then he knowsx0 and x1, suh that x20 =  = mx21 :Then m = x21x20 and pm = x1=x0. I.e. the ommitter anompute square roots modulo n. Hene he an also fatorn.



We have seen two shemes.One was omputationally onealing, but unonditionallybinding.The other was unondtionally onealing, but only om-putationally binding.Exerise. Are there shemes where both onealing andhiding are unonditional?



Commitments an be used to give zero-knowledge proofsfor any problems in NP.Example: graph 3-olourability (NP-omplete).Given a graph (V;E). The Prover knows how to olourits verties with three olours, suh that no edge has bothendpoints of the same olour.Let ' : V ! f1; 2; 3g be the olouring.The Prover wishes to ommuniate the 3-olourability of(V;E) to the Veri�er, without giving away '.



Let V = fv1; : : : ; vng and E � V � V . The prover� Chooses a random permutation � of the set f1; 2; 3g;� Lets i be a ommitment to �('(vi)) (1 6 i 6 n);� To ommit to a several bits long value, ommit toeah bit separately.� Sends (v1; 1); : : : ; (vn; n) to the Veri�er.(The Commitment)



The Veri�er piks an edge (vi; vj) and sends it to the Prover.(The Challenge)The Prover opens the ommitments i and j. (The Res-ponse)The Veri�er heks that the olours for vi and vj are di�e-rent.



If the graph (V;E) is not 3-olourable then there exists atleast one edge having the endpoints of the same olour.An honest Veri�er �nds it with the probability > 1=m.The probability that a Veri�er is fooled after k rounds isat most �1� 1m�k.If we take k = m2 (polynomial in the size of the graph)then this probability is about e�m.Beause limm!1 �1� 1m�m = 1=e.Hene the protool is seure.It is obvious that the protool works.



How to onstrut transripts without the Prover?First, selet the hallenge (vi; vj).Let i and j be ommitments to di�erent olours. Let theommitted olours of other verties be random.Note that the resulting distribution is not the same as thereal one (using the Prover), but it is indistinguishable fromthat.This is an example of omputational zero-knowledge. If thedistributions are equal then we have perfet zero-knowledge.



Example: Graph isomorphism in perfet zero knowledge.Given two graphs G0 = (V0; E0) and G1 = (V1; E1). TheProver knows a graph isomorphism ' : V0 �! V1.The Prover wants to onvine the Veri�er that G0 �= G1.



Commitment. Prover generates G01 = (V1; E 01) as a ran-dom isomorphi opy of G2 and sends it to the Veri�er.I.e. The Prover selets a random permutation  of V1 andtakes E 01 = f( (u);  (v)) j (u; v) 2 E1g :Challenge. The Veri�er sends a random bit b 2 f0; 1g tothe Prover.Response. If b = 1 then Prover returns f =  . If b = 0then Prover returns f =  Æ '.Veri�ation. The Veri�er heks that f is an isomorphismfrom Gb to G01.



Simulation (for an honest Veri�er).First generate b 2 f0; 1g.Then generate G01 as a random isomorphi opy of Gb.For a dishonest veri�er, generate b� 2 f0; 1g whose distri-bution may depend on Gb. If b 6= b� then start over.



A (zero-knowledge) proof is a protool.It is interative.Can we make it non-interative?I.e. the prover sends a single message to the veri�er andthe veri�er is onvined (or not).



A ommon way is:� Let h : f0; 1g� ! f0; 1gk be a �seure� hash funtion.� The prover generates ommitments C1; : : : ; Ck;� let b1 � � � bk = h(C1; C2; : : : ; Ck);� The prover generates responses ri for Ci and hallengebi.The whole proof is ((C1; r1); : : : ; (Ck; rk)).The veri�er regenerates b1; : : : ; bk and veri�es all k rounds.k must be long enough, suh that regenerating C1; : : : ; Ckuntil we get right hallenges is infeasible.h must �look like a random funtion�.



Also, an identi�ation sheme may be onverted to a sig-nature sheme.To sign message m:� Generate a ommitment C;� Let k = h(m;C)� Construt a response r for the ommitment C andhallenge k.� Signature is (C; r).k must be long enough to prevent regenerating C until aright hallenge is found.Shnorr's signature sheme is de�ned this way.


