
More hand-applied examples



Hill’s cipher

• Key: a number m and an invertible sqare matrix M ∈ Z
m×m
26 .

• Encoding: split the text to sequences of length m. The ciphertext

corresponding to x ∈ Z
m
26 is x · M .

• Decoding: the plaintext corresponding to the ciphertext y ∈ Z
m
26

is y · M−1.



Example: let m = 3 and

M =









15 2 13

8 21 1

14 16 7









.

Then detM ≡ 9 (mod 26), i.e. M is invertible in Z
3×3
26 (because 9 is

invertible in Z26).

Let the plaintext be CRYPTOGRAPHY or

(2, 17, 24), (15, 19, 14), (6, 17, 0), (15, 7, 24).

Multiplying all these four vectors with M (from the right) gives us the

ciphertext (8, 17, 3), (1, 3, 0), (18, 5, 17), (19, 15, 6) or

IRDBDASFRTPG.

To decode, let us find M−1. . .











15 2 13 1 0 0

8 21 1 0 1 0

14 16 7 0 0 1









→









1 14 13 7 0 0

8 21 1 0 1 0

14 16 7 0 0 1









→

Multiplied the first row with 7 = 15−1.








1 14 13 7 0 0

0 13 1 22 1 0

0 2 7 6 0 1









→









1 14 13 7 0 0

0 1 11 12 1 20

0 2 7 6 0 1









→

Added the right multiples of the first row to the second and third rows.

Then subtracted the sixfold third row from the second.








1 14 13 7 0 0

0 1 11 12 1 20

0 0 11 8 24 13









→









1 14 13 7 0 0

0 1 11 12 1 20

0 0 1 22 14 13









→

Subtracted the twofold second row from the third. Then multiplied

the third row with 19 = 11−1.











1 14 0 7 0 13

0 1 0 4 3 7

0 0 1 22 14 13









→









1 0 0 3 10 19

0 1 0 4 3 7

0 0 1 22 14 13









Added the multiples of the third row to the first and second row. Then

added the multiple of the second row to the first row. Hence

M−1 =









3 10 19

4 3 7

22 14 13









To decode, the vectors making up the ciphertext must be multiplied

with M−1 from the right.

(8, 17, 3) · M−1 = (2, 17, 24), etc.



Types of attacks against encryption systems

• ciphertext-only (tuntud krüptotekstiga)

– Given a ciphertext, find the plaintext and/or the key.

• known-plaintext (tuntud avatekstiga)

– The attacker knows a number of plaintext-ciphertext pairs.

With their help, find the key or the plaintext corresponding

to some other ciphertext.

• chosen-plaintext (valitud avatekstiga)

– The attacker can invoke the encoding function. Find the key

or the plaintext.

• chosen-ciphertext (valitud krüptotekstiga)

– The attacker can invoke the decoding function. Find the key

or the plaintext. The decoding function may not be invoked on

the ciphertext that we have to decode.



Known-plaintext attack on Hill’s cipher

Let m be known (if not, guess). let (xi, yi) be the pairs of known

plaintext-ciphertext pairs corresponding to an unknown key. I.e. yi =

xi · M .

• Let xi1 , . . . , xim
be linearly independent plaintexts.

• Let X be a matrix with the rows xi1 , . . . , xim
.

• Let Y be the matrix with the rows yi1 , . . . , yim
.

• Y = X · M , hence M = X−1 · Y .

• If m was unknown then we can use the other plaintext-ciphertext

pairs to verify the correctness of M .



Exercises

• What is the number of m × m-keys of Hill’s cipher?

• A square matrix M is involutory if M = M−1. Mr. Hill himself

suggested using an involutory matrix as a key. How many m × m

involutory matrices exist?

– Why would Hill have suggested so? Hint: he proposed this

cipher in 1929.



Affine Hill’s cipher

Hill’s cipher is just a linear transformation of Z
m
26.

A more general form of it is:

• Key: m ∈ N, M ∈ Z
m×m
26 , v ∈ Z

m
26, such that M is invertible.

• Encryption of x ∈ Z
m
26 is x · M + v.

• Decryption of y ∈ Z
m
26 is y · M−1 − v.



Exercises

• How to do a known-plaintext attack on affine Hill’s cipher (assum-

ing that m is known)?

– How many plaintext-ciphertext pairs we need if everything nec-

essary turns out to be linearly independent?

• If M in the key of the affine Hill’s cipher is the unit matrix, what

sort of cryptosystem results?



More exercises

• How resistant are Caesar cipher (a.k.a. shift cipher, nihkešiffer),

substitution cipher (asendusšiffer) and Vigenère cipher against

known-plaintext and chosen-plaintext attacks?

• How much corresponding plaintext and ciphertext is needed for a

known-plaintext attack on a multiply applied Vigenère cipher, if

the number of keys and their lengths are known?



Affine cipher

If m = 1 in affine Hill’s cipher, then the result is called just the affine

cipher.

In an affine cipher

• K = Z
∗

26 × Z26;

• e(k,a)(x) = k · x + a mod 26 for a character x;

• d(k,a)(y) = (y − a) · k−1 mod 26 for a character y.

(to encrypt a text: encrypt each character separately)



known-plaintext cryptanalysis

It is usually sufficient to have two pairs (x1, y1), (x2, y2) of correspond-

ing characters in plaintext and ciphertext.

Then






y1 = x1 · k + a

y2 = x2 · k + a
=⇒ (y1 − y2) = (x1 − x2) · k =⇒

k = (y1 − y2) · (x1 − x2)
−1 and a = y1 − x1 · k (mod 26)

If (x1 − x2) is not invertible in Z26 then we get several solutions for k.

Then we need more plaintext-ciphertext pairs.



Transposition cipher

• Key: m ∈ N and a permutation σ of {1, . . . , m}.

• To encrypt a plaintext:

– Write it down on rows, with m symbols per row.

∗ Pad or do not pad the text, to make its length divisible by

m.

– Permute the resulting m columns according to σ.

– Read out the ciphertext, row by row.

• To decrypt, do everything in reverse.

– If the plaintext was unpadded, figure out which columns were

taller.



Exercise: what is the relation between transposition cipher and Hill’s

cipher?



Example: let m = 8 and σ =
1 2 3 4 5 6 7 8

3 5 2 7 4 1 6 8
.

Let the plaintext be

THEFIRSTHOMEASSIGNMENTISDUEATTHETHURSDAYNEXTWEEK

T H E F I R S T

H O M E A S S I

G N M E N T I S

D U E A T T H E

T H U R S D A Y

N E X T W E E K

permuted:

R E T I H S F T

S M H A O S E I

T M G N N I E S

T E D T U H A E

D U T S H A R Y

E X N W E E T K

The ciphertext is

RETIHSFTSMHAOSEITMGNNIESTEDTUHAEDUTSHARYEXNWEETK



Cryptanalysis

• Recognizing transposition cipher: the letters in the ciphertext have

the same frequency as in the plaintext.

• First, somehow guess the number of columns m.

• Write text in m columns (as by decryption) and look for anagrams.

– Look for anagrams in rows, but also consider two rows (follow-

ing each other) together.

• For example, the last row in the previous example was

EXNWEETK.

– Probably an anagram of NEXTWEEK.

– This already fixes 5 of 8 rows.



Frequencies of di-, tri-, . . . -graphs

• Pick a column.

– . . . with largest number of common characters.

• Put another column beside it; consider the sum of frequencies (in

plaintext) of resulting bigrams.

– Also consider row breaks; you may want to shift the other col-

umn a position up or down.

• The column with the largest such sum is the most probable neigh-

bour.



• Using a substitution cipher and a transposition cipher together

usually gives good results:

• Determining the plaintext characters for some (frequent) charac-

ters in the ciphertext does not reveal parts of words.

• Anagramming, or looking for frequent digraphs is hard if we do

not know the alphabet.



Confusion and diffusion

A cipher provides good

• diffusion if the statistical structure of the plaintext leading to

its redundancy is “dissipated” into long range statistics — into

statistical structure involving long combinations of letters in the

cryptotext.

• confusion if it makes the relation between the simple statistics of

the cryptotext and simple description of the key a very complex

and involved one.

(paraphrased from: Claude Shannon. Communication Theory of Se-

crecy Systems. Bell System Technical Journal 28(4):656–715, 1949.)



Achieving confusion and diffusion

• Diffusion is usually obtained by permuting the characters.

– Or applying a more complex linear operation on long vectors

of characters.

• Confusion is achived by substituting characters (or short sequences

of them).

Iterating substitution and permutation may produce good ciphers.

Somewhere the key has to be mixed in, too.



Substitution-permutation network

S1,1

P1

S1,2 S1,3 S1,k

S2,1

P2

S2,2 S2,3 S2,k

Sn,1

Pn

Sn,2 Sn,3 Sn,k

K



Substitution gives good confusion

• When substitution cipher has been used, it is usually easy to find

the cryptotext character corresponding to “E”.

– This maps a simple statistic of the cryptotext (counts of char-

acters) to a simple property of the key.

• Maybe the cryptotext characters corresponding to some other fre-

quent plaintext characters can be found this way, too.

• But for finding the rest of the substitution key, longer stretches of

ciphertext have to be considered.

– A simple property of the key can only be derived from a com-

plex statistic of the ciphertext.

• This is confusion.



Fractionation

A character from the Latin alphabet does not have to be the “smallest

unit” operated on by a cipher.

If we sacrifice a letter then we can encode each character in the plain-

text as two elements of Z5.

This gives us a “plaintext” with Z5 as the alphabet.

We must have designed our cipher to work on Z
∗

5. We get the ciphertext

as a string from Z
∗

5.

Optionally we may encode it back into Latin alphabet.

Instead of Z
2
5 we may use Z

2
6 (allowing us to encode Latin alphabet

and numbers 0–9) or Z
3
3 (allowing one extra symbol).

Fractionation helps to destroy frequency statistics.



Limits of pre-modern ciphers

• A combination of ciphers and techniques seen here can give us a

quite strong cipher. But. . .

• Before the invention of computing machines, encryption and de-

cryption had to be done by hand.

• The construction of a cipher had to be simple enough, such that

this hand-operation produced reliable results even if performed in

a stressful situation.

• For more complex ciphers, mechanical machines (like ENIGMA)

were used.



A bit on information theory



A cryptosystem is unconditionally secure (absoluutselt turvaline) (wrt.

a class of attacks) if no adversary (no matter what resources it has)

can break it with the help of these attacks.



Let X be a random variable over the set X and Y a random variable

over the set Y .

Pr[X = x] denotes the probability that X gets the value x ∈ X .

Pr[X = x,Y = y] denotes the probability that X gets the value x ∈ X

and simultaneously Y gets the value y ∈ Y .

Pr[X = x|Y = y] denotes the probability that X gets the value x, given

that Y got the value y.

Pr[X = x,Y = y] = Pr[Y = y] · Pr[X = x|Y = y]

= Pr[X = x] · Pr[Y = y|X = x]

Bayes’ theorem: if Pr[Y = y] > 0, then

Pr[X = x|Y = y] =
Pr[X = x] · Pr[Y = y|X = x]

Pr[Y = y]
.

X ja Y are independent, if Pr[X = x|Y = y] = Pr[X = x] for all x ∈

X , y ∈ Y .



Let P, K ja C be random variables over sets P, K ja C, describing the

distribution of plaintexts, keys and ciphertexts. Then

Pr[C = y] =
∑

x∈P

k∈K

ek(x)=y

Pr[P = x,K = k] =

∑

k∈K

Pr[P = dk(y),K = k] =
∑

k∈K

Pr[P = dk(y)] · Pr[K = k] .

Pr[C = y|P = x] =
∑

k∈K

y=ek(x)

Pr[K = k]

Pr[P = x|C = y] =

Pr[P = x] ·
∑

k∈K

y=ek(x)

Pr[K = k]

∑

k∈K

Pr[P = dk(y)] · Pr[K = k]



An encryption system has perfect secrecy, if Pr[P = x|C = y] = Pr[P = x]

for all x ∈ P, y ∈ C.

Equivalently: Pr[C = y|P = x] = Pr[C = y] for all x ∈ P, y ∈ C.

Perfect secrecy is unconditional security wrt. ciphertext-only attacks.

Theorem. Shift cipher has perfect secrecy if its key is chosen with

uniform probability and a key is used to encrypt a single character.

Proof. P = C = K = Z26.

• Pr[K = k] = 1/26 for all k ∈ Z26.

• Pr[C = y] = 1/26 for all y ∈ Z26, because y = x + k, x and k are

independent and k is uniformly distributed.

• Pr[C = y|P = x] = Pr[K = y − x] = 1/26.

Pr[P = x|C = y] =
Pr[P = x] · (1/26)

1/26
= Pr[P = x] .



Assume that Pr[C = y] > 0 for all y ∈ C. If not, then remove this y

from C.

Lemma. If a cryptosystem has perfect secrecy then for all x ∈ P and

y ∈ C there exists k ∈ K, such that ek(x) = y.

Proof. Assume the contrary, i.e. there exist x and y, such that ek(x) =

y for no k. Then Pr[C = y|P = x] = 0, but Pr[C = y] > 0. Hence

there is no perfect secrecy.



Exercise

We have independent random variables P and K and the derived ran-

dom variable C.

The definition of perfect secrecy uses P and K.

K is defined by the encryption system. So it’s natural to use it.

But does perfect secrecy actually depend on P?



Theorem. Let (P, C, K, E, D) be an encryption system where |P| =

|K| = |C|. This encryption system has perfect secrecy iff the key is

chosen uniformly and for all x ∈ P, y ∈ C exists a unique k ∈ K, such

that ek(x) = y.

Proof. ⇒. Let the system have perfect secrecy. Then for all x ∈ P and

y ∈ C there is at least one k ∈ K, such that ek(x) = y. Because the

same key is usable for at most |P| pairs of (x, y), there cannot be more

than one.

Fix y ∈ C. Let P = {x1, . . . , xn}. Denote the elements of K in such

a way: let ki ∈ K be the key for which eki
(xi) = y. From the perfect

secrecy:

Pr[P = xi] = Pr[P = xi|C = y] =

Pr[P = xi] · Pr[C = y|P = xi]

Pr[C = y]
=

Pr[P = xi] · Pr[K = ki]

Pr[C = y]
,

i.e. Pr[K = ki] = Pr[C = y] for all i, i.e. the probabilities of all keys

must be equal.

⇐: like the proof of perfect secrecy for the shift cipher.



Vernam’s cipher or one-time pad (ühekordne šifriblokk):

• P = C = K = {0, 1}n;

• ek1...kn
(x1 . . . xn) = dk1...kn

(x1 . . . xn) = (x1 ⊕ k1) . . . (xn ⊕ kn).

– ki, xi ∈ {0, 1}.

Vernam’s cipher has perfect secrecy (if the key is uniformly distributed

and each key is used only once).



Exercises

• A latin square M is a n×n square filled with numbers 1, . . . , n, such

that each i occurs exactly once in each row and column. Define

an encryption system:

– P = C = K = {1, . . . , n};

– ei(j) = M [i, j].

Show that this encryption system has perfect secrecy.

• Show that affine cipher has perfect secrecy (if it is used to encrypt

a single letter).

• Show that if an encryption system with perfect secrecy has |P| =

|K| = |C|, then all ciphertexts are equiprobable.



If we do not have perfect secrecy, then how much information about

the key is leaked into the ciphertext? When can we determine the key

(and the plaintext) with near-absolute certainty?

Let X be a random variable over the (finite) set X . The entropy of X

is

H(X) = −
∑

x∈X

Pr[X = x] · log2 Pr[X = x] .

Define 0 · log2 0 = 0, because lim
x→0

x log x = 0.

H(X) (more or less) corresponds to the average number of bits neces-

sary to encode the value of X.

H(X) = 0 if and only if X always gets the same value. Then one of

the probabilities is 1 and the rest are 0.



A prefix-free encoding of the set X is a mapping κ : X → {0, 1}∗, such

that none of κ(x)-s is a prefix of another.

Given X, the average length ℓ(κ) of κ is

ℓ(κ) = E[|κ(X)|] =
∑

x∈X

Pr[X = x] · |κ(x)| .

Theorem. For all prefix-free κ, H(X) ≤ ℓ(κ).

Theorem. There exists a κ, such that ℓ(κ) < H(X) + 1.

(One such κ is the Huffman code of X , where Pr[X = x] is the weight

of the element x ∈ X .)



H(X,Y) = −
∑

x∈X
y∈Y

Pr[X = x,Y = y] · log2 Pr[X = x,Y = y] .

Conditional entropy of X wrt. Y:

H(X|Y) = −
∑

y∈Y

∑

x∈X

Pr[Y = y]Pr[X = x|Y = y] log2 Pr[X = x|Y = y] .

How many bits are necessary to encode X if everybody knows Y?



A function f is concave (kumer) in an interval [a, b] if for all x1, x2 ∈

[a, b] and λ ∈ [0, 1]:

λ · f(x1) + (1 − λ) · f(x2) ≤ f(λ · x1 + (1 − λ) · x2) .

I.e. the graph of the function (in the interval [a, b]) is above any straight

line segment between two points of that graph.

Concavity is strict (range) if equality holds only for λ ∈ {0, 1} (when-

ever x1 6= x2).

Logarithm is a strictly concave function in [0,∞). . .

Jensen’s inequality: let f be strictly concave function in the interval I.

Let x1, . . . , xn ∈ I and let a1, . . . , an ∈ (0, 1], such that a1+· · ·+an = 1.

Then
n

∑

i=1

aif(xi) ≤ f
(

n
∑

i=1

xi

)

and equality holds iff x1 = · · · = xn.

Proof: induction over n. n = 2 is the def. of concavity.



Theorem. The maximum value of H(X) is log2 |X |. It is attained

only if X is uniformly distributed.

Proof. Let X = {x1, . . . , xn} and denote pi = Pr[X = xi] Assume that

pi > 0 (otherwise remove xi from X). Then |X | = n.

H(X) = −
n

∑

i=1

pi log2 pi =
n

∑

i=1

pi log2

1

pi

≤ log2

n
∑

i=1

pi ·
1

pi

= log2 n .

We used Jensen’s inequality with ai = pi and xi = 1/pi. The equality

holds only if 1/p1 = · · · = 1/pn, i.e. p1 = · · · = pn.



Theorem. H(X,Y) ≤ H(X)+H(Y) with equality holding iff X and

Y are independent.

Proof. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym} and denote

• pi = Pr[X = xi];

• qi = Pr[Y = yi];

• rij = Pr[X = xi,Y = yi]. Then

– pi =
∑m

j=1 rij ,

– qj =
∑n

i=1 rij .

X and Y are independent iff rij = piqj for all i, j.



H(X,Y) = −

n
∑

i=1

m
∑

j=1

rij log2 rij =

n
∑

i=1

m
∑

j=1

rij log2

1

rij

H(X) + H(Y) = −
n

∑

i=1

pi log2 pi −
m

∑

j=1

qj log2 qj =

−

( n
∑

i=1

m
∑

j=1

rij log2 pi +
m

∑

j=1

n
∑

i=1

rij log2 qj

)

=

−
n

∑

i=1

m
∑

j=1

rij(log2 pi + log2 qj) = −
n

∑

i=1

m
∑

j=1

rij log2(piqj)



H(X,Y)−H(X)−H(Y) =
n

∑

i=1

m
∑

j=1

rij log2

1

rij

+
n

∑

i=1

m
∑

j=1

rij log2(piqj) =

n
∑

i=1

m
∑

j=1

rij

(

log2

1

rij

+ log2(piqj)
)

=
n

∑

i=1

m
∑

j=1

rij log2

piqj

rij

≤

log2

n
∑

i=1

m
∑

j=1

rij ·
piqj

rij

= log2

n
∑

i=1

m
∑

j=1

piqj = log2

( n
∑

i=1

pi

)

·

( m
∑

j=1

qj

)

= log2 1 = 0

We used Jensen’s inequality with aij = rij and xij = piqj/rij .

Equality holds only if ∃c ∀i∀j : piqj/rij = c. Then also
n
∑

i=1

m
∑

j=1

piqj =

c
n
∑

i=1

m
∑

j=1

rij . Both sums are equal to 1, hence c = 1, piqj = rij , and X

and Y are independent.



Theorem. H(X,Y) = H(Y) + H(X|Y).

Proof. Let pi, qj , rij have the same meaning as before. Then

Pr[X = xi|Y = yj ] =
Pr[X = xi,Y = yj ]

Pr[Y = yj ]
=

rij

qj

.

H(Y) + H(X|Y) = −
m

∑

j=1

qj log2 qj −
n

∑

i=1

m
∑

j=1

qj

rij

qj

log2

rij

qj

=

−

( n
∑

i=1

m
∑

j=1

rij log2 qj +

n
∑

i=1

m
∑

j=1

rij log2

rij

qj

)

=

−
n

∑

i=1

m
∑

j=1

rij log2 rij = H(X,Y)

Corollary. H(X|Y) ≤ H(X) with equality iff X and Y are indepen-

dent.



Theorem. In an encryption system, H(K|C) = H(K)+H(P)−H(C).

Proof.

H(K|C) = H(K,C)−H(C) = H(P,K,C)−H(P|K,C)−H(C) =1)

H(P,K,C) − H(C) = H(P,K) + H(C|P,K) − H(C) =2)

H(P,K) − H(C) =3) H(P) + H(K) − H(C)

1. Ciphertext and key uniquely determine the plaintext,

hence H(P|K,C) = 0.

2. Similarly, H(C|P,K) = 0.

3. Plaintext and key are independent — the key has been chosen

beforehand and it should not influence the choice of the plaintext.



Exercises

• Show that the encryption system has perfect secrecy iff

H(P|C) = H(P).

• Show that H(P|C) ≤ H(K|C).

• Compute H(K|C) and H(K|P,C) for the affine cipher.



We know how to compute H(K). But what is H(P)? How to estimate

it? The possible values of P are meaningful texts. P is the set of

strings over an alphabet (of, say, 26 letters).

The entropy of a random string of letters (uniformly chosen) is log2 26 ≈

4.70 per letter.

The entropy of a random string of letters (with probabilities of letters

as in English) is ≈ 4.17 per letter.

But in a meaningful text, successive letters are not independent.

Let Pn be a random variable that ranges over plaintexts of length n

with probabilities of the natural language L.

If we have a large enough corpus of texts then we can compute Pr[Pn = s]

for all s ∈ Σn, and also compute H(Pn).

Let Cn be the random variable ranging over n-letter ciphertexts.



The entropy HL and the redundancy RL of L (per letter) are

HL = lim
n→∞

H(Pn)

n
RL = 1 −

HL

log2 |Σ|

The limit exists because (H(Pn)/n)n is a decreasing sequence bounded

below by 0.

Various experiments estimate that 1.0 ≤ HEnglish ≤ 1.5.



We have H(Pn) ≥ nHL = n(1 − RL) log2 |Σ| and H(Cn) ≤ n log2 |Σ|.

Hence

H(K|Cn) = H(K) + H(Pn) − H(Cn) ≥ H(K) − nRL log2 |Σ| .

If the encryption key is chosen uniformly then

H(K|Cn) ≥ log2 |K| − nRL log2 |Σ| = log2

|K|

|Σ|nRL

This inequality gives us some guarantees regarding the impossibility

of completely determining the key from a ciphertexts. This guarantee

vanishes if

log2

|K|

|Σ|nRL

≤ 0 ⇔ |K| ≤ |Σ|nRL ⇔ n ≥
log2 |K|

RL log2 |Σ|

If we take |Σ| = 26, |K| = 26! (substitution cipher) and RL = 0.75

(corresponding to HL ≈ 1.18) then the last fraction is ≈ 25.07. I.e.

a ciphertext created using the substitution cipher should be uniquely

decryptable if its length is at least 25.


