
Alice wants to access some resources controlled by Bob.

Bob is willing to provide them to Alice, but not to every-

one.

Alice has to convince Bob that she really is Alice.

How?

This is the identification problem.



Passwords — the simplest scheme.

Alice and Bob have agreed on a common bit-string M .

Alice sends M to Bob. Bob verifies that it really receivedM and grants access to Alice.



Problems:� An eavesdropper may learn M and impersonate Alice

afterwards.� Bob has to store M somewhere. If Bob’s computer

gets compromised then M has leaked.� Alice may not use M to identify herself to Charlie.

– Because Bob could impersonate her.

– And if Bob’s computer is compromised, then the

attacker can impersonate her also to Charlie.� If M is human-memorable then it typically has low

entropy.



To prevent the leakage of M when Bob’s computer is com-

promised, Bob only stores h(M), where h is a one-way

function.

The low entropy of M still allows it to be brute-forced.

If Bob has a database of h(M)-s for many different users

then compromising him is especially attractive.

To reduce attractiveness, Bob stores not h(M), but(R;h(R jjM)) for a random string R.� different R-s for different users.



If M has high entropy, it cannot be memorable to humans.

It may be stored on a smart-card instead.

This smart-card may require a PIN to activate. It may

lock after a couple of false PINs.



If Alice always sends the same M to Bob then the eaves-

dropper can impersonate her.

Use one-time passwords or randomization.

It is possible to use very little storage for a lot of passwords,

if they are generated in a special way.



Let r be a random string. Let n be the number of pass-

words. DefineMn = rMi = h(Mi+1) (0 6 i 6 n� 1)

for a one-way hash function h.

Alice stores r. Bob stores M0.
To identify itself for the i-th time, Alice recomputes Mi

from r and sends it to Bob. Bob verifies that h(Mi) =Mi�1. Bob then stores Mi and may delete Mi�1.



If Alice always sends the same M to Bob then the eaves-

dropper can impersonate her.

Use one-time passwords or randomization.

The randomness has to come from Bob’s side.

Challenge-response protocol:� Bob generates a challenge x and sends it to Alice.� Alice responds by computing something from x andM , and sending it to Bob.� Bob verifies that the message sent by Alice was really

computed from x and M in the prescribed way.



For example, let E be the encryption function of some

symmetric cryptosystem.� Bob generates a bit-string x and sends it to Alice. Also

computes yB = EM(x).� Alice computes yA = EM(x) and sends it to Bob.� Bob verifies that yA = yB.

Problems:� Alice cannot use M to identify herself to Charlie.� The attacker impersonating Bob can mount a chosen-

plaintext attack against M .



Let E and D be the encryption and decryption functions

of some asymmetric cryptosystem.

Let Ms be Alice’s secret key and Mp Alice’s public key.� Bob generates a bit-string x, computes y = EMp(x)

and sends it to Alice.� Alice computes x0 = DMs(y) and sends it to Bob.� Bob verifies that x = x0.
Good things:� Alice never reveals Ms. She merely proves her knowl-

edge of Ms.� Hence Alice can use Ms to identify herself to Charlie.

But chosen-ciphertext attacks are possible.



Schnorr’s identification scheme. Let � be the security pa-

rameter. Let p be a 1024-bit prime number, such that

discrete log. in Z�p is hard and q j (p�1) is a 160-bit prime

number, such that q > 2�. Let g 2 Z�p have the order q.
Alice’s secret key: a 2 Zq . Public key: h = ga.
Commitment Alice picks random r 2 Zq , sends x = gr

to Bob.

Challenge Bob chooses a random k 2 f1; : : : ; 2�g, sends

it to Alice.

Response Alice sends y = (r + ak) mod q to Bob.

Verification Bob accepts if x = gy=hk in Z�p.
This scheme is fast as commitments can be precomputed.



If Alice and Bob are honest then verification succeeds:gy=hk = g(r+ak) mod q � (ga)�k = gr+ak � g�ak = gr = x :

Exercise. Suppose that Eve is able to predict Bob’s choice

of k at the challenge step. How can she then impersonate

Alice?

Exercise. What happens if Alice reveals r?
Exercise. What happens if Alice uses the same r in two

different sessions?



Soundness proof. Let A be an adversary running in

time t that on input (p; q; g; h) can impersonate Alice with

probability at least ".
A runs in two phases, A1 and A2.� A1 outputs the commitment x.� A2, on input of the challenge k, outputs the responsey.� A1 also outputs some “internal state” s that is input

to A2.



Construct an algorithm B as follows:

1. Let (x; s) A1(p; q; g; h).
2. Let K = f1; : : : ; 2�g. Repeat:

(a) Randomly choose a challenge k1 2 K.

(b) Get the response y1  A2(k1; s).
Until verification succeeds.

3. Let K = f1; : : : ; 2�gnfk1g. Generate k2; y2 as in previ-

ous step.

4. Use these values to find a = logg h. Exercise: how?



Average running time of B:� Step 1: 6 t.� Step 2: 6 t=".� Step 3: 6 t"�2�� .� Step 4: Some.

Hence the existence of the algorithm A allows us to take

discrete logarithms in time O( t"�2�� ).
This is efficient if " is larger than (1 + o(1)) � 2��. �

(Recall that it is trivial to construct an adversary whose

success probability is 2��).



What does Bob learn after running Schnorr’s identification

protocol?� That the other party knew Alice’s secret key.� Anything else???

Could Bob impersonate Alice afterwards? We did not

prove that the protocol does not leak Alice’s secret keya. . .
No proof of such kind of property is known for Schnorr’s

scheme.

We only proved that before interacting with Alice, Bob

cannot impersonate her.



Okamoto identification scheme. Let �, p and q be as be-

fore. Let g1; g2 2 Z�p be two elements of order q, such that

nobody knows 
 = logg1 g2.
Alice’s secret key: (a1; a2) 2 Z2q . Public key: h = ga11 ga22 .

Commitment Alice picks random r1; r2 2 Zq , sends x =gr11 gr22 to Bob.

Challenge Bob picks a random k 2 f1; : : : ; 2�g and sends

it to Alice.

Response Alice sends y1 = (r1 + a1k) mod q and y2 =(r2 + a2k) mod q to Bob.

Verification Bob verifies that x = gy11 gy22 =hk.
Exercise. Show that the scheme works.



Security proof. Suppose that the adversary A is able to

impersonate as Alice (with probability " > (1+o(1)) �2��).
The adversary may have run the protocol with Alice.

Similarly to the proof for Schnorr’s scheme, we can find

some (b1; b2) 2 Zq , such that h = gb11 gb22 .(b1; b2) is most probably different from (a1; a2).� Because A-s view on the protocol depends only ona1 + 
a2 = b1 + 
b2, not on the whole (a1; a2).
From ga11 ga22 = gb11 gb22 we find 
 = logg1 g2. �



Exercise. Consider the following identification scheme:

Alice’s secret key: large primes p and q (such that p � q �3 (mod 4)).
Public key: n = pq.
Challenge Bob picks some z 2 Zn and sends y = z2 modn to Alice.

Response Alice finds x 2 Zn, such that x2 � y (mod n),
and sends x to Bob.

Verification Bob checks that x2 = y.
Why is this scheme insecure?



Fiat-Shamir identification scheme.� Key generation: Alice generates two large primes p,q and computes n = pq. Alice generates a randoms 2 Z�n and computes v = s2 mod n.

– Public key: (n; v). Secret key: (n; s).� Protocol:

Commitment Alice generates a random r 2 Znnf0g,
computes x = r2 mod n, and sends x to Bob.

Challenge Bob generates a random b 2 f0; 1g and

sends it to Alice.

Response Alice sends y = rsb mod n to Bob.

Verification Bob accepts if y2 = xvb.



If Alice knows s then she can always make Bob accept by

computing y correctly.

If the adversary can compute s from (n; v) then he can also

factor n. This is supposedly intractable.

Soundness: How successfully can the adversary imper-

sonate Alice without knowing s?
The adversary cannot respond correctly to both challenges

(0 and 1).
If he knows both r and rs then he can compute s.



If the adversary can correctly guess b that Bob is going to

send then he may� Choose y 2 Znnf0g and compute x = y2 � v�b mod n.

Use that x as the commitment.� y will then be the correct response.

Hence the adversary can fool Bob only with probability50%.

Executing the protocol several times will exponentially di-

minish that probability.

Exercise. If the challenge b was not chosen from the setf0; 1g, but from the set f0; : : : ;m � 1g, then what would

the fooling probability be?



Security:

What does Bob (or an adversary) “learn” from an execution

of that protocol?

Well, whatever. . .

But the “new information” is certainly upper-bounded by� Bob’s random choices;� the trace (x; b; y) of the protocol.



Here (x; b; y) is generated according to a distribution where� x is a random quadratic residue modulo n;� b is a random bit;

– Its distribution may depend on x.
– I.e. Bob may be actively trying to determine Alice’s

secret s.� y is a square root of xvb.
– y = rsb is a random element of Znnf0g because r

is a random element of Znnf0g and s is invertible

in Zn.



Bob (or anyone else) can sample this distribution himself:� Generate a random bit b� by tossing a fair coin.� Generate a random y 2 Znnf0g.� Set x = y2v�b� mod n.� Generate the random bit b according to the distribu-

tion that depends on x.� If b 6= b� then start over.



We see that all “new information” that Bob could obtain

by running the protocol could have been generated by Bob

himself, without the help of Alice.

Hence there really was no new information (beside the fact

that Alice knows the secret key).

We say that this protocol has the property of zero-knowledge

(nullteadmus).

This was an example of a zero-knowledge proof of knowl-

edge.



Let G be a cyclic group where taking discrete logarithms

is hard, let g be a generator of G and m = jGj. Let Alice

generate a 2 Zm and publish h = ga.
Alice can prove her knowledge of a to Bob as follows:

Commitment Alice generates a random r 2 Zm, com-

putes x = gr and sends x to Bob.

Challenge Bob generates a random b 2 f0; 1g and sends

it to Alice.

Response Alice sends y = r + ab to Bob.

Verification Bob accepts if gy = xhb.
Exercise. Prove that the protocol works, is secure, and

has the zero-knowledge property.



Several rounds of the protocol have to be run, such that

the probability of Alice not cheating is high enough.

They may be run one after another or in parallel.

Or can they?

Exercise. What is the difference between running rounds

one after another and running them in parallel?



Recall the simulation (for a single round):� Generate b� 2 f0; 1g by tossing a fair coin.� . . .� Obtain b 2 f0; 1g; its distribution depends on things

that happened above.� If b 6= b� then start over.

Probability of succeeding (not starting over): 1=2.
To simulate k rounds, we have to do the work above ap-

proximately 2k times.



For k rounds the simulation would be� Generate b�1; : : : ; b�k 2 f0; 1g by tossing fair coins.� . . .� Obtain b1; : : : ; bk 2 f0; 1g; their distribution depends

on things that happened above.� If 9i : bi 6= b�i then start over.

Probability of succeeding: 1=2k.
Exponentially small in k.
To simulate k rounds, we have to do the work above ap-

proximately 2k times.



We have seen zero-knowledge proofs of knowledge of fac-

torization and discrete log.

Proof of knowledge , identification scheme.

We also saw a non-zero-knowledge proof of knowledge (of

a secret key of some asymmetric cryptosystem).



Consider now the case where the Prover� knows that a certain claim holds;� knows its proof;� wants to convince Verifier that the claim holds;� does not want to reveal anything else.

For example, Prover wants to convince Verifier that (g; h; y1; y2)

is a Diffie-Hellman tuple (here g; h; y1; y2 2 G for some

group G, m = jGj).
I.e. 9x 2 Zm (which Prover knows) such that y1 = gx andy2 = hx.



Recall our “voting scheme”:� There are a number of voters V1; : : : ; Vk.� The voter Vi has a choice ei 2 f0; 1g.� The Tallier has an ElGamal public key h. He knowsa, such that ga = h.� The voter Vi generates a random ri and publishes (gri ; geihri).� The votes are multiplied, resulting in (gR; gEhR) =(
1; 
2), where E =Pi ei.� The Tallier decrypts, and publishes gE. Brute-forcing

reveals E.

Tallier acted correctly if (g; 
1; h; 
2g�E) is a Diffie-Hellman

tuple. The common exponent is a.



Prover and Verifier know G, m, (g; h; y1; y2).
Prover knows x, such that gx = y1, hx = y2.
Commitment Prover randomly picks r 2 Zm and sendsA = gr and B = hr to Verifier.

Challenge Verifier sends a random bit b 2 f0; 1g to Prover.

Response Prover sends s = (r + bx) mod m to Verifier.

Verification Verifier accepts if A = gsy�b1 and B = hsy�b2 .

Exercise. Prove that the protocol works, is secure, and

has the zero-knowledge property.



The protocol may be understood as follows:

The Prover made the following claims:

0. A andB are constructed correctly (i.e. logg A = loghB).

1. If A and B are constructed correctly then logg y1 =logh y2.� y1 = gs�logg A and y2 = hs�logh B = hs�logg A.

The Verifier will verify one of these claims, but the Prover

does not know beforehand, which one.

This was an example of zero-knowledge proof.



Let us have protocols for proving in zero knowledge thatA0 holds, and that A1 holds.

Then there is a protocol for proving in zero knowledge thatA0 _ A1 holds.

With this protocol, a voter can prove the correctness of his

vote.



Suppose that Ai holds and the prover is able to prove it in

zero knowledge.

Commitment Run the simulator for A1�i, producing(
1�i; b1�i; r1�i). Generate 
i as when proving Ai. Send(
0; 
1) to the verifier.

Challenge The verifier chooses a bit b and sends it to the

prover.

Response Set bi = b� b1�i. Generate ri as when provingAi, using bi as the challenge. Send (b0; b1; r0; r1) to the

verifier.

Verification Check that (
0; b0; r0) is a proof for A0, (
1; b1; r1)

is a proof for A1 and b0 � b1 = b.



Let us play the following game. We both choose a bit. If

their xor is 1 then you win, otherwise I win.� So, what is your bit?� . . .� Tough luck, so is mine.

This seems to be unfair. . .



� So, what is your bit?� My bit? It is in that sealed envelope. What is yours?� My bit is. . .� OK, you may open the envelope now.

This is fair.

The envelope was an example of bit commitment (bitikin-

nistus).



A bit commitment is a cryptographic primitive with three

operations:� Key generation;� Committing — takes the secret key and the bit to be

commited, and produces the commitment and the re-

vealing information.� Verifying — takes the public key, commitment, the

bit that was allegedly commited, and revealing infor-

mation, and either accepts or rejects.



A bit commitment must have two properties:

Concealing The public key and commitment should not

reveal the committed bit.

Binding It must be impossible to produce a commitment

that can be opened both ways.



Historically, encryption has been used for commitment.� To commit, generate a new key K and a random stringR.� Commitment of b is EK(f(b;R)) for some f that com-

bines b and R.� Revealing information is (K;R).� Verification: recompute EK(f(b;R)).
Concealing is obvious. Binding depends on E and f .



Bit-commitment based on quadratic residuosity:

Key generation Let p; q 2 P, n = pq, m 2 Zn, such that�mp � = �mq � = �1. (n;m) is the public key.� Then
�mn� = 1, but m is a quadratic non-residue

modulo n.

Committing Choose a random x 2 Zn. The commitment

is 
 = mbx2 mod n. The revealing information is x.
Verifying Check whether 
 � mbx2 (mod n).



The scheme is unconditionally binding because the com-

mitments of 0 are quadratic residues, and the commitments

of 1 quadratic non-residues.

It is believed that distinguishing quadratic residues from

non-residues is hard. Under this assumption, the scheme

is concealing.

Exercise. n and m are generated by the Prover. What

happens if the Prover lets m to be a quadratic residue?



Another one:

Key generation Let p; q 2 P, n = pq. Committer must

not know p and q (recipient may know them). Let m

be a quadratic residue modulo n. (n;m) is the public

key.

Committing Choose a random x 2 Zn. The commitment

is 
 = mbx2 mod n. The revealing information is x.
Verifying Check whether 
 � mbx2 (mod n).



Concealing is unconditional — the possible commitments

are the same for 0 and 1.
If a committer could open 
 as both 0 and 1, then he knowsx0 and x1, such that x20 = 
 = mx21 :
Then m = x21x20 and

pm = x1=x0. I.e. the committer can

compute square roots modulo n. Hence he can also factorn.



We have seen two schemes.

One was computationally concealing, but unconditionally

binding.

The other was uncondtionally concealing, but only com-

putationally binding.

Exercise. Are there schemes where both concealing and

hiding are unconditional?



Commitments can be used to give zero-knowledge proofs

for any problems in NP.

Example: graph 3-colourability (NP-complete).

Given a graph (V;E). The Prover knows how to colour

its vertices with three colours, such that no edge has both

endpoints of the same colour.

Let ' : V ! f1; 2; 3g be the colouring.

The Prover wishes to communicate the 3-colourability of(V;E) to the Verifier, without giving away '.



Let V = fv1; : : : ; vng and E � V � V . The prover� Chooses a random permutation � of the set f1; 2; 3g;� Lets 
i be a commitment to �('(vi)) (1 6 i 6 n);

– To commit to a several bits long value, commit to

each bit separately.� Sends (v1; 
1); : : : ; (vn; 
n) to the Verifier.

(The Commitment)



The Verifier picks an edge (vi; vj) and sends it to the Prover.

(The Challenge)

The Prover opens the commitments 
i and 
j. (The Re-

sponse)

The Verifier checks that the colours for vi and vj are dif-

ferent.



If the graph (V;E) is not 3-colourable then there exists at

least one edge having the endpoints of the same colour.

An honest Verifier finds it with the probability > 1=m.

The probability that a Verifier is fooled after k rounds is

at most

�1� 1m�k.
If we take k = m2 (polynomial in the size of the graph)

then this probability is about e�m.

Because limm!1 �1� 1m�m = 1=e.
Hence the protocol is secure.

It is obvious that the protocol works.



How to construct transcripts without the Prover?

First, select the challenge (vi; vj).
Let 
i and 
j be commitments to different colours. Let the

committed colours of other vertices be random.

Note that the resulting distribution is not the same as the

real one (using the Prover), but it is indistinguishable from

that.

This is an example of computational zero-knowledge. If the

distributions are equal then we have perfect zero-knowledge.



Example: Graph isomorphism in perfect zero knowledge.

Given two graphs G0 = (V0; E0) and G1 = (V1; E1). The

Prover knows a graph isomorphism ' : V0 �! V1.
The Prover wants to convince the Verifier that G0 �= G1.



Commitment. Prover generates G01 = (V1; E 01) as a ran-

dom isomorphic copy of G1 and sends it to the Verifier.

I.e. The Prover selects a random permutation  of V1 and

takes E 01 = f( (u);  (v)) j (u; v) 2 E1g :

Challenge. The Verifier sends a random bit b 2 f0; 1g to

the Prover.

Response. If b = 1 then Prover returns f =  . If b = 0

then Prover returns f =  Æ '.

Verification. The Verifier checks that f is an isomorphism

from Gb to G01.



Simulation (for an honest Verifier).

First generate b 2 f0; 1g.
Then generate G01 as a random isomorphic copy of Gb.
For a dishonest verifier, generate b� 2 f0; 1g whose distri-

bution may depend on Gb. If b 6= b� then start over.



Parallel composition of k sessions for graph 3-colourability:

1. Prover sends the commitments C1; : : : ; Ck;
2. Verifier replies with the challenges b1; : : : ; bk;
3. Prover sends the responses r1; : : : ; rk;
4. Verifier checks that Ci; bi; ri are correctly related.

Problem: bi may depend on Cj for j > i and the simulation

is no longer expected polynomial-time.



How about:

1. Verifier sends the challenges b1; : : : ; bk;
2. Prover sends the commitments C1; : : : ; Ck;
3. Prover sends the responses r1; : : : ; rk;
4. Verifier checks that Ci; bi; ri are correctly related.

Well. . .

That does not prove anything anymore. . .



How about this:

1. Verifier sends the bit-commitments 
1; : : : ; 
k to the

challenges, using an unconditionally concealing com-

mitment scheme;

2. Prover sends the commitments C1; : : : ; Ck using an un-

conditionally binding commitment scheme;

3. Verifier opens 
1; : : : ; 
k; Prover learns b1; : : : ; bk;
4. Prover sends the responses r1; : : : ; rk;
5. Verifier checks that Ci; bi; ri are correctly related.

Here Ci may depend on 
i. . . but this dependence does not

help the prover in choosing the opening ri of Ci.



A (zero-knowledge) proof is a protocol.

It is interactive.

Can we make it non-interactive?

I.e. the prover sends a single message to the verifier and

the verifier is convinced (or not).



A common way is:� Let h : f0; 1g� ! f0; 1gk be a “secure” hash function.� The prover generates commitments C1; : : : ; Ck;� let b1 � � � bk = h(C1; C2; : : : ; Ck);� The prover generates responses ri for Ci and challengebi.
The whole proof is ((C1; r1); : : : ; (Ck; rk)).
The verifier regenerates b1; : : : ; bk and verifies all k rounds.k must be long enough, such that regenerating C1; : : : ; Ck

until we get right challenges is infeasible.h must be a (pseudo)random function. But h is public. h

is a random oracle.



Also, an identification scheme may be converted to a sig-

nature scheme.

To sign message m:� Generate a commitment C;� Let k = h(m;C)� Construct a response r for the commitment C and

challenge k.� Signature is (C; r).k must be long enough to prevent regenerating C until a

right challenge is found.

Schnorr’s signature scheme is defined this way.


