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The rules for encoding and decoding are both given using

the same secret k.



Asymmetric encryption:
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The rules for encoding and decoding are given by different
bit-strings. The bit-string k. giving the encoding rule is

not sensitive.

Finding k4 from k. should be infeasible.



A function f:{0,1}* — {0, 1}* is one-way if
e computing f(z) from z is easy (for almost all z);

e given y, finding an z such that f(z) = y, is infeasible

on average.
A family of functions { f; }:;c; is one-way if
e computing f;(z) from z is easy for almost all < and z;

e given y and ¢, finding an z such that f;(z) = vy, is
infeasible (averaged over y and 2).

The encoding function must be a one-way family (para-
metrized by the public keys) of functions.



If e is one way, then how does one decode?

A family of functions { f; }:c; is trapdoor (tagauksega) one-

way if

o {fi}ics is one-way;

e for each 7 exists 1;, such that given y, ¢ and 1%, it is
easy to find an z, such that f;(z) = v.

e Pairs (z,1;) are easily generated together.

1 is the public key. The trapdoor %; is (a part of) the secret
key.



A hard (NP-complete) problem: SUBSET-SUM.
Given: a vector of integers (ai,...,a,) and s € Z.

Determine whether there exist such z4,...,z,, that z; €
{0,1} and > , z;a; = s.

Computational version: find those z;, if they exist.

The vector (ay,...,a,) is called the knapsack.



Consider the knapsack
a = (143,125, 67, 85,201, 98, 46, 176, 128,54, 83) .

Then

e a,646 has a solution because
646 = 125 + 201 4+ 98 + 46 + 176.

e a,589 has no solutions.

e a,833 has two solutions:
833 = 125 + 67 + 85 + 201 + 98 + 46 + 128 + 83 =
143 + 85 + 201 + 46 + 176 + 128 + 54.



To solve the instance (a4,...,a,), s of SUBSET-SUM:

Generate all possible vectors (zi,...,z,) € {0,1}" and
check whether > " . z,a; = s.

Time complexity: O(2"). Space complexity: O(n).



A faster, “meet-in-the-middle” algorithm:

Let n = 2m. Define the sets

S = {Z z.a; | (z1,...,2zm) € {0,1}™}

n

S, = {5 — Z T,a; | ($m+1, . .’Bn) - {0, 1}m}

1=m-+1

Sort both S; and S; and check whether some value occurs
in both sets.

Time complexity: O(n2™/?). Space complexity: O(2"/?).

Fastest known algorithm for solving general instances of
SUBSET-SUM.



Suppose that (ai,...,a,) are such, that all 2" possible
sums are different.

We can define an encoding function

e(alr"aan) : {07 1}n — Z

n
€(a1,..an)(T1 " Tp) = E Tia; .
1=1

The function family e might be one-way. ..

Where 1s the trapdoor?



A knapsack (aq,...,a,) is superincreasing if a; > Z;;ll a,
forallz € {1,...,n}.

Instances of SUBSET-SUM, where the knapsack 1s super-
increasing, can be easily solved with a greedy algorithm.

In Merkle-Hellman singly-iterated knapsack cryptosystem,
the main part of the secret key is a superincreasing knap-
sack (by,...,bn).

The public key is a transformed version of that knapsack,
such that it “looks like a general instance of a knapsack”.



Transformation: pick M € N such, that M > > " . b,. Also
pick W € Z3,.

Let a; = Wb; mod M. Public key: (ay,...,a,).

And the secret key was ((by,...,b,), M,U) where U = W1
(mod M).

Decoding: when we recieve s € Z then compute s’ = s -
U mod M. Then solve the SUBSET-SUM instance ((by,...,b,),s’).

Theorem. If the SUBSET-SUM instance ((a,...,an),S)
has a solution then the instance ((by,...,b,),s-U mod M)
also has a unique solution. Moreover, these two solutions
are equal.



Example: let n = 10 and consider the superincreasing
knapsack

(1,3,5,9,20,39,81, 159, 318, 643) .

Then M must be greater than 1278. Pick M = 1301 and
W = 517. Then U = 765.

To construct the public knapsack, multiply the elements
of the secret knapsack by 517 (mod 1301), giving

(517, 250, 1284, 750, 1233, 648, 245, 240, 480, 676) .



Public key:
(517,250, 1284, 750, 1233, 648, 245, 240, 480, 676)

To encode the bit-string 0110011010 compute

0-517+1-250+1-1284+0-750+0-1233+1-648
+1-2454+0-240+1-48040-676 = 2907 .

The cryptotext is 2907.



Secret key:
(1,3,5,9,20, 39,81, 159, 318, 643), 1301, 765

To decode 2907, compute 2907765 mod 1301 = 446. Solve
the superincreasing knapsack:

446 < 643 | 446 — 0-643 = 446 8<20|8—-0-20=38
446 > 318 | 446 — 1-318 =128 8<9 |8—-0- 9=328
128 <159 | 128 — 0-159 =128 825 |8—1-5=3
128 >81 | 128 —1- 81 =47 323 |[3—1- 3=0
47 > 39 47 —1- 39=8 0<1l |0—-0-1=0

The plaintext was 0110011010.



The cryptosystem is insecure because (a4, ..., a,) does not
quite “look like a general instance of a knapsack”.

We are given (ai,...,a,). We want to find a superinc-
reasing (by,...,b,), U and M, such that b, = a;- U mod M
and the previous theorem holds.

Forz,y € R,y >0wecandefinezmody=z—y-|z/y|.
We also have (cz) mod (cy) = ¢(z mod y) for all ¢ > 0.
If (by,...,b,),U, M suits us, then (cby, . .., cb,), cU, cM suits

us as well.

We take M = 1. Now our task is to find a suitable (by,...,b,),U.



Consider the graph of b; = a; - U mod 1. It maps the value
of a; to the value of b;, depending on the (unknown) U.

b1

1__ - = - - = -




b, is the smallest of the knapsack elements (very small
compared to 1 = M > > " . b;). Hence U must belong to
the marked region.

b1

1__ - = - - = -




Also, b; = a; - U mod 1 must be very small if ¢ is small.

The correct U is close to the discontinuation points of both
a;1-U mod 1 and a; - U mod 1.

The discontinuation points of a; - U mod 1 are p/a;, where
1<p<La — 1L

The discontinuation points of a; - U mod 1 are q/a;, where
l<g<a;— 1

We are looking for discontinuation points that are close to
each other.



—8<£_i<5 1<p<&1—1 1<q<az—1

aq a;
—0<pa;—qa; <0 1<p<a—-1 1<g<a;—1

This system of equations gives us candidate p-s. We'll test
their suitability.

[Adi Shamir, A poly.-time algo. for breaking the basic MH
cryptosystem, Proc. of 32nd Symp. on Foundations of CS,
1982] suggests that 7 € {2,3,4} and § ~ 1/a;/2.

0 may be adjusting depending on the number of candidate p-s.

The system above is solvable in polynomial time (if we
treat 7 as a constant).



Let p be fixed. Consider the interval [p/ai,(p+1)/a,).

[/ | o

The discontinuation points of b; = a,U mod 1 partition it

to sub-intervals |z,,z,.1) for 7 € {0,...,m} for some m.
Here zo = p/a; and z,, = (p+ 1)/a;.

In each interval |z;,z,,1) the graph of b; = a;U mod 1 is
just a straight line b; = a;U — c.

The values z; and c] are straightforward to find.

1

The expected number of intervals is O(n).



Consider an interval [z;,z;,1). We are looking for some
U in that interval that would make (by,...,b,) superinc-
reasing. We have the linear inequalities

T; <U <z

En:(azU — CZ) <1
1=1

k—1
Vke{2,...,n}: > aU—c <alU—q,
1=1

If these inequalities have a common solution then it is the
suitable U.



Example: public key is (141, 68,136, 199, 106, 66, 54).

We have the following inequalities for p, g, g3, q4:
1<p<140 1< <67 193135 1< g4 <198
—0 <68p—141g; <0 —0<136p—141g3< 9

~§ < 199p — 141g, < 6

Shamir suggests § ~ 8.



o —8 < 68p— 141g, < 8 gives

p € {2,27,29, 31, 54,56, 58,83,85,87,110, 112,114,139}
e —8 < 136p — 141q; < 8 gives

p € {1,27,28,29,55,56,57,84,85,86,112,113, 114, 140}
o —8 < 199p — 141q,4 < 8 gives

p € {17,22, 34,39, 51,56, 68, 73, 85,90, 102,107,119, 124}

Intersection:
p € {56,85}



Consider the interval I = [22, 2L). If U € I then

1417 141
e a,U mod 1 has no discontinuation points.
e a3U mod 1 has no discontinuation points.
e a,U €7 if U=280/199.

e a5U mod 1 has no discontinuation points.
e agU mod 1 has no discontinuation points.
e a,U mod 1 has no discontinuation points.

56 80 __ b7

Hence zo = 20 L1 = 199, T2 = 747



56 80

In (7277 199

) we have

by = 141U — 56 by, = 68U — 27 bs = 136U — 54
by =199U — 79 b5 = 106U — 42 bg = 66U — 26
b; = 54U — 21

The inequality > ., b; < 1 gives 770U — 305 < 1 or U <

56 153

153 : 56 153
2o - 1he allowed interval for U reduces to (37, 552 )-

Consider the inequalities stating the superincreasing con-
dition.



Interval: (2, 502 ).

Condition: b; < bs.

141U — 56 < 68U — 27

29
U< =
73
. .. 56 _ 20 _ 153
Ordering: > < 25 < 22¢.
: . (56 29
New interval: (37, 73)-



Interval: (3, 2).

Condition: b; + by < bs.

141U — 56 4+ 68U — 27 < 136U — 54

29
U< 22
<73

New interval: (2%, 22).



Interval: (3, 2).

Condition: b; + by, + b3 < by.

141U — 56 + 68U — 27 + 136U — 54 < 199U — 79

29
U< 22
<73

New interval: (2%, 22).



Interval: (3, 2).

Condition: b; + by + bs + by < bs.

141U —56 468U — 27+ 136U —54 +199U — 79 < 106U — 42

29
U< 22
<73

New interval: (2%, 22).



Interval: (2, 2).

COIlditiOIl: bl —+ b2 -+ b3 —+ b4 -+ b5 < b6.

141U — 56 + 68U — 27 + 136U — 54 4 199U — 79+
106U — 42 < 66U — 26

29
73

New interval: (2%, 22).



Interval: (2, 2).

Condition: bl + b2 -+ b3 -+ b4 + b5 -+ b6 < b7.

141U — 56 4 68U — 27 + 136U — 54 4 199U — 79+
106U — 42 4 66U — 26 < 54U — 21

263
U< -
< 662
.. 29 _ 263
Ordering: = < £25.
: . (56 29
New interval: (37, 73)-

Any element of this interval is a suitable U.



85

For example, pick U = 3%.

I.e. pick U = 85 and M = 214.
Computing b; = a;U mod M gives us the secret knapsack

(1,2,4,9,22,46,96) .

In the construction of this example I used U = 114 and
M = 287. Their ratio also lies in this interval. They give
the knapsack

(2,3,6,13,30,62,129) .



A variation of the MH knapsack system permutes the ele-
ments of the public knapsack (ai,...,a,). The permuta-
tion is part of the secret key.

We can no longer choose the components of a correspon-
ding to by,...,bs, but we can guess them.

e We don’t really need four smallest b;-s. Four small
b;-s suffices.

When verifying the superincreasing condition, we do not
know the ordering of elements b4,...,b,.

To overcome this, when we partition [p/a{,(p+ 1)/a;) to
smaller intervals, we also consider the intersection points
of the graphs of some a;U mod 1 and a;U mod 1.

In all such intervals the ordering of b4,...,b,, is fixed.



The density of a knapsack (aq,...,a,) is

R=— n

[log max; a; |
The densities of the knapsacks that we have seen:
o (141,68,136,199,106,66,54):%;
o (1,2,4,9,22,46,96): 1;
e (2,3,6,13,30,62,129): {.

The knapsacks with densities > 1 usually have multiple
decodings of messages.

The public key usually has density less than 1.

When using the parameters suggested by Merkle and Hell-
man, the public key has the density ~ 0.5.



Almost all instances of SUBSET-SUM, where the density
of the knapsack is less than 0.9408.. ., are easily solvable.

Let bq,..., b, be a basis of the vector space R".
The integer lattice determined by this basis is the set of

vectors
{mb;+...+m,b,|m4,...,m, € Z} .

Shortest vector problem (SVP): given the basis, determine

the shortest non-zero vector (according to the Euclidean
norm) of the lattice thus defined.



There exist polynomial-time algorithms for approximating
the solution to the SVP.

The LLL-algorithm finds a vector in the lattice that is no

more than 2("~1)/2 times longer than the shortest vector.
In practice, it often works even better.

The SVP in lattices may be easy on average.



Given a SUBSET-SUM instance (ai,...,a,),s, consider
the integer lattice with the basis

b, = (1,0, ...,0, Na,)
bzz(o,l,...,O,NCLg)

where N € Z, N > 2/n.

Let z4,...,x, be the solution to the given instance. Then
(Zf’:l a:ibz-) —bnpi1 = (21— %, e a:n—%, 0) is a short vector
in that lattice. With high probability, it is a solution to the
SVP.



Algorithm for solving SUBSET-SUM instances (a4, ..., a,), s:

1.

2.

Construct the basis by,...,b,11;

Solve the SVP for the lattice determined by this basis.
Let e = (ey,...,ens1) be the result.

. Check that e,,; = 0 and eq,...,e, € {3, —3}. If not,

then fail.

Let z; = ei+%. If> " . z;a;, = sthenreturn (z4,...,z,).
. Letz; = 2—e,. If Y " | z,a; = sthenreturn (z4,. .., z,).
. Fail.



When creating the key for the knapsack cryptosystem, we
transform a knapsack (b4, ..., b,) to another one (a4, ..., a,).

We could iterate this transformation multiple times.

Each time, we must save U = W~! and M in the secret
key.
This gives rise to the multiply-iterated knapsack cryptosys-

tem.

In general, multiple iteration makes the elements of the
knapsack larger and thus reduces density.



