Where are these things used

(Peeter's view)

The constructions we have seen

Block ciphers

- Differential cryptanalysis
- Stream ciphers LFSRs
- Symmetric and asymmetric encryption
- Diffie-Hellman key agreement
- Signatures, message authentication codes
- Compression and hash functions
- Identification schemes
- Hard problems:
 - Factoring, RSA, quadratic residuosity
 - Discrete logarithms, Diffie-Hellman in (subgroups of)
 - \mathbb{Z}_p^*
 - Elliptic curves over finite fields

DES

- Proposed in 1975, standardized 1976
- Intended for sensitive, but *unclassified* government data
- Spurred an interest in cryptography outside certain agencies
- Short keys, short block length
- Hardware-oriented
- First large-scale application: securing the connections between banks and ATMs
 - $\mathsf{DES}(k_{\text{secret}}, \cdot)$ also used as a random function

Block ciphers in 1990s

FEAL

- First variant proposed in 1987 by researchers at NTT
- ◆ 64-bit blocks, 64-bit (later more) keys
- Feistel network, byte-oriented design
- Broken; was instrumental in the development of differential and linear cryptanalysis
- Idea (International Data Encryption Algorithm)
 - Proposed in 1991 by researchers at ETH Zürich
 - ◆ 64-bit blocks, 128-bit keys
 - Interesting mix of 16-bit operations
 - Patented in USA, Japan, some European countries (until 2011)
 - Included in PGP (and in Cybernetica's VPN product)
 - Together with Pentium MMX, inspired Helger to work on fast implementations of block ciphers

Block ciphers in 1990s

BlowFish

- Proposed by Bruce Schneier in 1993
- ◆ 64-bit blocks, variable-length keys
- Included (as an option) in lots of products http://www.schneier.com/blowfish-products.html
- Was not so well-known in Estonia (?)
- RC5 ("Rivest's Cipher 5")
 - Proposed in 1994
 - Patented
 - Subject of the RSA Secret-Key challenge

Strengthened versions of DES

Triple-DES

- 168-bit keys ("112-bit strength"), 64-bit blocks
- Either EEE- or EDE-mode
 - EDE-mode is backwards compatible with DES
- Slow, but was ubiquitous, thanks to relationship with DES

DESX

- Proposed by Kilian and Rogaway in 1996
- $\mathsf{DESX}_{k,k_1,k_2}(m) = k_2 \oplus \mathsf{DES}_k(m \oplus k_1).$
- Effective key length ≈ 119 bits.

US Export restrictions

- Dual-use technology applicable both in commercial and in military sector.
- Exporting militarily useful technology from USA requires a license.
 The implementations of encryption algorithms were classified as munitions.
 - To export, one had to negotiate with the Dept. of Commerce.
 Generally, the export versions of products were allowed to use up to 40-bit keys.
 - For example, Netscape had different versions...
- "Implemented in Europe" was a pretty strong selling point in 1990s.
 In late 1990s and 2000s, the rules have been relaxed...
- See also http://www.wassenaar.org

Competition for AES

- Submission: July 1998, AES chosen Oct. 2000
- Had to have 128-bit blocks, 128/192/256-bit keys
- 15 submissions, 5 picked to the second round
 - MARS, RC6, Rijndael, Serpent, TwoFish
- No obvious weaknesses known for any of them
 Hence speed was a big factor in making the final choice
 - Helger contributed
- These days, everybody uses AES as their block cipher...

Ciphers in GSM

A5/1, A5/2. Were kept secret. Leaked in 1999.

- A5/2 is a weakened version of A5/1
- A5/1: Three LFSR-s of 64 registers in total. Combined with XOR.
 - Irregularly clocked (the only non-linear part)
- 64-bit key, used as (sort of) the initial content of registers.
 - In fielded implementations, 10 bits are fixed.
- Weaknesses: short key, small internal state.
 - A5/2 is extremely weak, and no longer used.

WEP / WPA

- WEP = Wired Equivalent Privacy
- RC4 (a stream cipher) + CRC32
 - When using RC4, certain details have to be taken into account.
 WEP does not do it.
 - CRC is not a MAC
- WPA = Wi-Fi Protected access
 - Uses RC4 (WPA2 uses AES in Counter mode)
 - A proprietary MAC (WPA2 uses CBC-MAC with AES)
- $\blacksquare RC4 \equiv Rivest's Cipher 4$
 - A stream cipher that is not based on LFSRs
 - Internal state: a permutation of $\{0, 1, \dots, 255\}$.
 - Intially, it is shuffled based on the key.
 - At each step, it is shuffled, and a byte is output.

Hash functions

- Construction:
 - Specify a compression function
 - ad-hoc design
 - Specify the padding
 - Add the length, pad to block size
- Use Merkle-Damgård construction to get a hash function
- Used in signing, protocols, general integrity protection.
 SHA-1 still the most popular

Hash trees

I Physics: arrow of time \equiv increase of entropy I Crypto: arrow of time \equiv application of one-way functions

- If $y = h(z_1 || x || z_2)$ then "x existed before y"
 - But z_1, z_2 must be known
- ◆ Take the "transitive closure" of the previous relation
- Hash trees are used to give short proofs of temporal order
 - Used in time-stamping

Message authentication codes

- Used to implement secure channels
- HMAC probably the most popular construction
 - $MAC_{k_1,k_2}(m) = h(k_1 || h(k_2 || m))$
 - Actually, k_1 and k_2 are derived from the same key k
- SHA-1 is still the most popular hash function...
- A different use: a lightweight method to keep untrusted storage from modifying your files.
- In the EMV protocol, the card will compute a MAC for the transaction data using a key that it shares with the bank.
 - Default algorithm: CBC-MAC with DES

RSA encryption

- Was patented in USA and promoted by RSA corporation
- Patents expired at around 2000
- Used to encrypt symmetric keys in secure e-mail applications...
- But OpenPGP message format (RFC 4880) specifies ElGamal as the must-implement encryption
 - OpenSSL does not contain ElGamal
- Some key-exchange protocols also use public-key encryption to send a secret key from one party to another

Diffie-Hellman key exchange

- The first asymmetric primitive (1976)
 - ElGamal encryption proposed in 1984
- Used to agree on session keys
 - ♦ By, e.g., SSH
 - Elliptic curves also used

Signatures

- Used in certificates (PKI)
- Also used to ensure the integrity of messages in DH key exchange
 - SSH uses DSA (must implement) or RSA
 - Both RSA and DSA have well-defined standards of implementation
- Used to sign documents
 - See, for example, http://digidoc.ee

Identification and Zero-knowledge

- General schemes are of theoretical interest only There exist efficient zero-knowledge protocols for certain tasks, but I am not aware of any widespread usage
 - In a more controlled environment, non-zero-knowledge methods can be attractive, too
 - E.g. passwords, or signatures to meaningless messages
- E.g. the identification done by Estonian ID-cards really means participation in SSL key exchange