Final exam in Cryptology I November 9th, 2009

1. Let (n, e) be Alice's public key for the RSA encryption system. Let n be a rather long modulus (say, 2048 bits) and let e be long, too (chosen randomly from $\mathbb{Z}_{\varphi(n)}^*$). Let $c = k^e \mod n$ be the encryption of a DES key k that has been sent to Alice. Here k is a bitstring of length 56 that we naturally interpret as an integer between 0 and $2^{56} - 1$.

Suppose Eve has learned c and wants to learn k, but performing a brute-force search (up to 2^{56} modular exponentiations) is somewhat beyond her computational capabilities. However, Eve has learned that the sought-after number k is actually a product of two 28-bit numbers. Show how she can find k.

- 2. Construct a signature scheme with the following parameters:
 - There is a public RSA modulus n = pq. Nobody knows the factors p and q.
 - There is a (public) collision-resistant hash function $H: \{0,1\}^* \to \mathbb{Z}_n$.
 - The secret key of a party is a randomly chosen element $s \in \mathbb{Z}_n^*$.
 - The corresponding public key is $k = s^2 \mod n$.
 - The signature of a message $m \in \{0, 1\}^*$ is (x, y), where $x, y \in \mathbb{Z}_n$.
 - The verification algorithm checks that $x^2 ky^2 = H(m)$.

I.e. explain how the signing procedure works.

Informal remark. The scheme is actually insecure. It is possible to find x and y without knowing s.

- 3. Let H_1 and H_2 be two hash functions where H_2 is collision-resistant, but H_1 is not. What can be said about the collision-resistance of H where $H(x) = H_1(H_2(x))$?
- 4. From an identification protocol consisting of three messages (commitment C, challenge k and response r(C, k)) it is possible to construct a signature scheme, where the signature of a message m is (C, r(C, h(C, m))). Work out the details for the Okamoto identification protocol (explain what are the secret and public keys, how do signing and verification algorithms work).

The test makes up a quarter of the final grade. All exercises in the test have equal weight.