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1 Introduction

When one looks at commitment and encryption schemes, it is rather easy to
spot the similarities between the two cryptographic notions. Although their
functionalities are different and they are used for different purposes, they share
a similar structure. Both encryptions and commitment make use of public keys,
encryption schemes have an additional secret key. In both cases the secret hiding
and revealing stages occur, only the way these phases are handled differ. In the
case of an encryption scheme, we use the public key to lock a message and the
secret key to open it again. Commitment schemes also use the public key to lock
a message, but to instead of unlocking, one usually needs to reveal the message
in order to open a commitment.

It is always possible to make a commitment scheme from an encryption
scheme. Making an encryption scheme from a commitment scheme is trickier
though, because there exists no secret key in the simple commitment scheme con-
struction. In order to make an encryption scheme from a commitment scheme,
the latter needs to be extractable. The trapdoor information that an extractable
commitment can reveal is not used in commitment schemes because it would
break their security. It is however used for example in constructing encryption
schemes and in zero knowledge proofs.

In this seminar paper we look at the components and properties of com-
mitment and encryption schemes. In section 4, we take a closer look at ex-
tractability, the commitment scheme property necessary for constructing en-
cryption schemes. We go on to look at how to make an encryption scheme from
a commitment scheme and vice versa in section 5. And finally in sections 6 and
7 we take a look how different properties are dual for the two notions.

2 Commitment Schemes

In describing the commitment schemes, we follow the classical formalisation that
has also been used in [LN06]. A commitment scheme consists of three parts:
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key generation Gen, commitment Com and opening Open. The key generation
algorithm generates the public parameters pk ← Gen. The commitment algo-
rithm Compk : M× R → C × D computes the commitment string c of fixed
length and a decommitment value d from the message m ∈ M. Very often
d = (m, r), where r ∈ R is the randomness used in the commitment. The
opening algorithm Openpk : C × D → M∪ {⊥}, given the correct commitment
and decommitment values outputs the message m. If the decommitment value
is incorrect, the algorithm outputs the abort value ⊥ .

Commitment schemes have two essential properties—hiding and binding.

Definition 2.1. A commitment scheme is (t, ε)-hiding, if any t-time adversary
A achieves advantage

Advhid

Com(A) = 2 ·

∣∣∣∣∣Pr

[
pk← Gen, s← {0, 1} , (m0,m1, σ)← A(pk),
(cs, ds)← Compk(ms, r) : A(σ, cs) = s

]
− 1

2

∣∣∣∣∣ 6 ε .

Two special cases of this property are statistical and perfect hiding. Sta-
tistical hiding is (∞, ε)-hiding. This means that if the adversary has infinite
computing power, he gets information about the message being committed to
with negligible i.e. very, very small probability. Perfect hiding is (∞, 0)-hiding.
This means that a commitment to a message reveals no information about about
the message, even to an infinitely powerful adversary. We use the term compu-
tationally hiding to refer to the cases where t is not infinite.

Definition 2.2. A commitment scheme is (t, ε)-binding, if any t-time adversary
A achieves advantage

Advbind

Com(A) = Pr

[
pk← Gen, (c, d0, d1, σ)← A(pk) :
⊥ 6= Openpk(c, d0) 6= Openpk(c, d1) 6= ⊥

]
6 ε .

Two special cases of this property are statistical and perfect binding. Statis-
tical binding is (∞, ε)-binding. This means that even if the adversary has infinite
computing power, he can cheat with negligible probability. Perfect binding is
(∞, 0)-binding. This means that even with infinite computing power, the adver-
sary cannot change his mind after committing to a message. We use the term
computationally binding to refer to the cases where t is not infinite.

A commitment scheme cannot be statistically binding and hiding at the
same time. If there were such a scheme, then if the sender chooses a random r
and sends a commitment C = Com(0, r), there must exist another random r0

such that C = Com(1, r0). If not, the receiver can conclude that the committed
value could not be 1 with quite a high probability, violating statistical hiding.
But then if the sender has unlimited computing power, he can find that r0 and
change his mind from 0 to 1, violating the statistical binding property. The
same thing applies to perfect binding and hiding [DN06].
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3 Encryption Schemes

The structure of a commitment scheme, is very similar to that of an encryption
scheme. The encryption scheme also consists of three parts: key generation Gen,
encryption Enc and decryption Dec. The key generation algorithm generates the
public and secret key (pk, sk)← Gen, revealing only the public key to all parties.
The encryption algorithm Encpk :M×R→ E computes the cryptotext e of fixed
length from the message m ∈ M and the randomness r ∈ R. The decryption
algorithm Decsk : E →M∪{⊥}, given the encryption value outputs the message
m. If the encryption value is corrupted, the algorithm outputs the abort value
⊥ .

We define two properties of encryption schemes. An encryption scheme can
be indistinguishable under chosen plaintext attack (IND-CPA). This property
defines the security of the encryption scheme against a time-bounded adversary,
who outputs two messages and given the encryption of one of the two, has to
decide which one has been encrypted. We give a more formal definition of the
IND-CPA property [BDPR98].

Definition 3.1. An encryption scheme is (t, ε)-IND-CPA secure, if any t-time
adversary A achieves advantage

Advind−cpa(A) = 2 ·

∣∣∣∣∣∣∣Pr

 (pk, sk)← Gen, s← {0, 1} ,

(m0,m1, σ)← A(pk),
e← Encpk(ms; r) : A(σ, e) = s

− 1
2

∣∣∣∣∣∣∣ 6 ε .

It is easy to see the similarities between this definition and definition 2.1 of
the hiding property of commitment schemes.

An encryption schemes can be Indistinguishable under adaptive chosen ci-
phertext attack (IND-CCA2). This property defines the security of the encryp-
tion scheme against a time bounded adversary A, that works much like the
adversary in definition 3.1, but in addition it has access to the decryption or-
acle at two stages of the game—first, when outputting the message pair, and
second, when trying to determine which of the two messages was encrypted. It
is assumed, that A does not ask the oracle to decrypt e. We give a more formal
definition of the IND-CCA2 property [BDPR98].

Definition 3.2. An encryption scheme is (t, ε)-IND-CCA2 secure, if any t-time
adversary A achieves advantage

Advind−cca2(A) = 2 ·

∣∣∣∣∣∣∣Pr

 (pk, sk)← Gen, s← {0, 1} ,

(m0,m1, σ)← ADecsk(·)(pk),

e← Encpk(ms; r) : ADecsk(·)(σ, e) = s

− 1
2

∣∣∣∣∣∣∣ 6 ε ,

where Decsk(·) is a decryption oracle.
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4 Extractability

The notion of extractable commitments was proposed in the article [SCP00] in
the context of non-interactive zero-knowledge proofs. Extractable commitment
schemes have an additional property to the usual hiding and binding—if a party
knows a certain secret value, they are able to extract the message from the
commitment. There is an extra key generation algorithm Gen∗ in an extractable
commitment scheme. This algorithm outputs the secret key sk in addition to
the public key pk. Everything else in the scheme works as before only there
exists an additional function. The extraction function Extrsk : C → M opens
a commitment c ∈ C to the original message m ∈ M. We give the formal
definition for extractability [SCP00, Cre02, LAN05].

Definition 4.1. A commitment scheme is (t, ε)-extractable if any t-time ad-
versary A achieves advantage

Advextr(A) = Pr

[
(sk, pk)← Gen∗, (c, d)← A(pk) :
Extrsk(c) 6= Openpk(c, d) 6= ⊥

]
6 ε , (1)

where the distributions of the public keys pk output by Gen and Gen∗ coincide.

Less formally, there is only a negligible chance that a time-bounded adversary
A can create such a commitment-decommitment pair (c, d) that the function
Extrsk extracts a message m from the commitment, while Openpk(c, d) outputs
a different message m′. The original Gen function is used, when we want to
initiate the commitment scheme. The second generation function Gen∗ is used,
when we want to initiate the scheme that is equivalent to an encryption scheme.
The extraction function can only be used in the second case. It is quite simple
to see that as soon as the receiver knows sk, the commitment scheme is useless,
because the receiver can open it at any time.

Theorem 4.1. For every reasonable time bound t, a (t, ε)-extractable commit-
ment scheme is only computationally hiding.

Proof. Let Com = (Gen,Gen∗,Com,Open,Extr) be an extractable commitment
scheme then for any t-time adversary A the inequality (1) holds. Let us fix
the adversary as the challenger in the hiding game. For some fixed and valid
messages m0,m1 ∈M, the adversary A will be the following

A(pk) s← {0, 1}
(c, d)← Compk(ms)
Return (c, d)

From the extractability condition and the commitment c that A outputs,

Pr [Extrsk(c) 6= Open(c, d) = mi] ≤ ε . (2)
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Now consider an adversary B = (B1, B2) who plays the hiding game, finding the
secret key and, thus, computing Extrsk(c). That adversary achieves advantage

Adv(B) = Pr

[
pk← Gen, s← {0, 1} , (m0,m1, σ)← B1(pk),
c← Compk(ms) : B2(σ,ms) = s

]
> 1− ε .

The only problem that remains is how the adversary B can find the secret
key. First, we look at schemes where for any fixed pk there exists exactly one
sk. In this case, B simply runs the Gen∗ function until he finds the secret key
corresponding to the given public key pk. This means that the scheme cannot be
statistically hiding, because given enough time, the adversary finds the message
with a very high probability.

Secondly, we look at schemes, where for each pk there exist one or more
sk. Then for a fixed pk it is possible to choose sk∗ that achieves the best error
probability against A. This probability can be explicitly computed by generating
all possible keys, computing the commitments for m0 and m1, and finding the
corresponding probabilities. Obviously the inequality (2) must still hold since
sk∗ can be taken as sk. Hence, the best error probability is not greater than ε.
For the same reasons, these schemes are also only computationally hiding.

Theorem 4.1 implies that the extraction function must be efficient. Since
the scheme is computationally hiding, it can be opened if we have enough time,
and we do not need the secret key at all. So we do not require a separate
inefficient extraction function that needs a secret key. Intuitively we can say
that the scheme must be at least statistically binding. Otherwise there exist
double openings for at least some commitments and the extraction function
could not uniquely open the commitments. Unfortunately, this is not always
true [Cre02].

5 Canonical Correspondence

We show how to construct an encryption scheme from a commitment scheme and
vice versa. In the following, let Com = (GenCom ,Gen∗Com ,Com,Open,Extr) be an
extractable commitment scheme and Enc = (GenEnc ,Enc,Dec) be an encryption
scheme. Also, let m ∈M be a message and r ∈ R be the used randomness.

First, to construct an encryption scheme from an extractable commitment
scheme, we map the functions of Com to those of Enc. The encryption scheme
needs a key generation, an encryption and a decryption function.

We use the key generation algorithm Gen∗Com of the commitment scheme as
the key generation algorithm GenEnc of the encryption scheme. The GenEnc func-
tion outputs the public and secret key pair (pk, sk) that it gets from Gen∗Com . To
show canonical correspondence between a commitment function and an encryp-
tion function, we also need to specify the randomness r used in both schemes.
Therefore, we use the functions with specified randomness. The Enc(m; r) func-
tion uses the Compk(m; r) function to encrypt the message m, outputting the
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commitment part c from the commitment-decommitment pair (c, d) that it gets
from Compk(m; r). The decryption function Dec(c) uses the extraction function
Extrsk(c) of the commitment scheme to open the encryption and output the
message m. It is straightforward from the Definition 4.1 that the decryption
function succeeds with very probability (1− ε).

Next, to construct a commitment scheme from an encryption scheme, we
map the functions of Enc to those of Com. An ordinary commitment scheme
needs a key generation, a commitment and an opening function. We also add
an extraction function and a second key generation algorithm that outputs the
key pair. This way the constructed commitment scheme is extractable.

The GenEnc function outputs a key pair (pk, sk). We only need the public
key for the original key generation algorithm GenCom of the commitment scheme.
This algorithm takes pk from the pair and discards the rest, as in the commit-
ment scheme scenario, the secret key is not known to anyone. The additional
key generation function Gen∗Com , on the other hand, outputs the whole key pair
(pk, sk) that it received from GenEnc . The commitment function Compk(m; r)
outputs the commitment-decommitent pair (c, d), where c is the encryption of
the message m output by Enc(m; r), and d simply contains the message m and
the used randomness r. The opening function Open(c, d) recommits to the mes-
sage m with randomness r and outputs the message m if the commitment it
computed matches c; otherwise, the function outputs a special character ⊥. The
extraction function has to open the commitment c without the decommitment
value. The function Extrsk(c) outputs the message m output by Dec(c).

The described transformations provide a canonic correspondence between
encryption schemes and commitment schemes.

6 IND-CPA Security and Extractability

We will show the duality between the IND-CPA security property of encryption
schemes and the computational hiding property of commitment schemes. In
the following, let Enc = (GenEnc ,Enc,Dec) be an encryption scheme and Com =
(GenCom ,Gen∗Com ,Com,Open,Extr) be an extractable commitment scheme.

Theorem 6.1. Let Com and Enc be in canonical correspondence. Then (t, ε)-
hiding implies (t, ε)-IND-CPA security.

Proof. We show that the constructed encryption scheme Enc has the necessary
properties, i.e., it is IND-CPA secure. We show that any time-bounded adver-
sary that complies to the assumption that Com is computationally hiding, is also
subject to the IND-CPA security property. To do this, we take an adversary
A that plays the hiding game and transform it into an adversary that plays
the IND-CPA game. A time-bounded A = (A1, A2), playing the hiding game,
achieves advantage
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Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 pk← GenCom , s← {0, 1} ,

(m0,m1, σ)← A1(pk),
(c, d)← Compk(ms) : A2(σ, c) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Instead of GenCom used above, the challenger can use Gen∗Com , since the distri-
butions of public keys output by both algorithms coincide, and just discard the
generated secret key from the acquired pair (pk, sk). In that case, and consid-
ering that Com and Enc are in canonical correspondence, we can rewrite the
advantage as

Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← GenEnc , s← {0, 1} ,

(m0,m1, σ)← A1(pk),
c← Encpk(ms) : A2(σ, c) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Hence the corresponding encryption scheme Enc is (t, ε)-IND-CPA secure.

Theorem 6.2. Let Enc and Com be in canonical correspondence. Then (t, ε)-
IND-CPA security implies (t, ε)- hiding.

Proof. We show that the constructed commitment scheme Com has the necessary
properties, i.e., it is computationally hiding. We show that any time-bounded
adversary that adheres to the assumption that Enc is IND-CPA secure, is also
subject to the computational hiding property. We do this similarly to the proof
of the previous theorem—we take an adversary A that plays the IND-CPA game
and transform it into an adversary that plays the hiding game. A time-bounded
adversary A = (A1, A2), playing the IND-CPA game, achieves advantage

Adv(A) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← GenEnc , s← {0, 1} ,

(m0,m1, σ)← A1(pk), e← Encpk(ms) :
A2(σ, e) = s

− 1

∣∣∣∣∣∣∣ ≤ ε .

Considering the canonical correspondence between Enc and Com, and as the
distributions of the public keys output by GenCom and Gen∗Com coincide, we can
rewrite the advantage as

Adv(A) =

∣∣∣∣∣2 · Pr

[
pk← GenCom , s← {0, 1} , (m0,m1, σ)← A1(pk),
(e, d)← Compk(ms) : A2(σ, e) = s

]
− 1

∣∣∣∣∣ ≤ ε .

Hence the corresponding commitment scheme Com is (t, ε)-hiding.

7 CCA2 Security and Non-Malleability

Usually, when talking about different protocols, we think about two parties
exchanging information. But there is always a chance that a malicious party
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might listen to or even interfere with the communication—this is known as the
man-in-the-middle attack. The most classical example of this attack concerns
ballot boxes. When the votes have been cast and the malicious party gains
access to the ballot box, it is very easy for him to include his votes in the box,
thus altering the results to his advantage. Note that this does not require the
adversary to break the hiding or binding property, just adding a related message
is sufficient. This kind of attack is a threat to commitment schemes as well—
malleability allows an adversary Ed to alter a commitment received from Alice,
in a meaningful way so that the receiver Bob cannot make sure whether the
commitment is original or it has been tampered with (Figure 1).

Alice
x−−−−→ Ed

x+y−−−−→ Bob

Figure 1: Man-in-the-middle attack

Non-malleability is a property that prevents an adversary from making
meaningful changes to the messages being passed from one party to the other.
Non-malleability with respect to commitment denies the adversary the possibil-
ity to create a new commitment from an existing one, whereas non-malleability
with respect to opening allows the adversary to make a commitment but not
open it. The difference between non-malleability with respect to commitment
and with respect to opening was first defined in the article [FF00]. We give
both of the definitions here. Although non-malleabiliy w.r.t. commitment is
a stronger notion, non-malleability w.r.t. opening has often been considered
enough for all practical applications [FF00]. In the following, when we talk
about non-malleability, we mean non-malleability w.r.t. commitment, if not
specified otherwise.

We give the descriptions of the two non-malleability games in figures. Non-
malleability w.r.t. opening can be seen in Fig. 2 and non-malleability w.r.t.
commitment is given in Fig. 3. In both of the games, the adversary has to decide
which message the commitment was made for. The two games begin similarly—
first the key generation algorithm Gen is run to produce the public key pk and
the A1 part of the adversary outputs two messages m0, m1 and an internal state
σ1. Next the challenger uniformly chooses a bit s and creates a commitment-
decommitment pair for message ms. The commitment value c from this pair is
given along with σ1 to A2 that outputs a tuple of commitments (ĉ1, . . . , ĉn) and
σ2. At this point the two non-malleability games go their separate ways.

Non-malleability w.r.t. opening means that an adversary, given a commit-
ment is not able to create a correct related commitment that he is able to open
himself. In this case the tuple created by A2 is given along with the decom-
mitment value d and the state σ2 to A3 that outputs a tuple of decommitment
values (d̂1, . . . , d̂n). The commitments (ĉ1, . . . , ĉn) are opened using the decom-
mitments, and a tuple (y1, . . . , yn) is received. If the original commitment c is
in the tuple (ĉ1, . . . , ĉn) or any of the opened commitments opened to ⊥, the
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GA
nm−open

pk← Gen

(m0,m1, σ1)← A1(pk)
s← {0, 1}
(c, d)← Compk(ms)
(ĉ1, . . . , ĉn, σ2)← A2(c, σ1)

(d̂1, . . . , d̂n)← A3(d, σ2)

yi ← Openpk(ĉi, d̂i), i = (1, . . . , n)

halt if c ∈ (ĉ1, . . . , ĉn) ∨ ⊥ ∈ (y1, . . . , yn)
if A4(m1, y1, . . . , yn, σ2) = s, return 1
else return 0

Figure 2: The game for non-malleability w.r.t. opening

game is halted, otherwise, the game outputs the decision made by A4 that is
given the message m1, the tuple (y1, . . . , yn) and the internal value σ2 as input.

Non-malleability with respect to commitment means that given a commit-
ment, an adversary is not able to create a correct related commitment that can
be opened at all. In this case the tuple created by A2 is given to the extraction
oracle Extr that opens them and receives a tuple (y1, . . . , yn). If the original
commitment c is in the tuple (ĉ1, . . . , ĉn), the game is halted, otherwise, the
game outputs the decision made by A4 that is given the message m1, the tuple
(y1, . . . , yn) and the internal value σ2 as input.

Definition 7.1. A commitment scheme is (t, ε)-non-malleable with respect to
decommitment if any t-time adversary A = (A1, A2, A3, A4) playing the game
Gnm−open achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ ≤ ε .

The following definition [BS99, FF00] is sensible only, if the commitment
scheme is either statistically binding or extractable.

Definition 7.2. A commitment scheme is (t, ε)-non-malleable with respect to
commitment if any t-time adversary A = (A1, A2, A4) playing the game Gnm−com

achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ ≤ ε ,

where Extr is a computable function such that Extrpk(c) = x if (c, d)← Compk(x).

If the commitment scheme is extractable, we can use the secret key and the
oracle Extrsk(·) instead of Extrpk(·). It is interesting to note that a commitment
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GA
nm−com

pk← Gen

(m0,m1, σ1)← A1(pk)
s← {0, 1}
(c, d)← Compk(ms)
(ĉ1, . . . , ĉn, σ2)← A2(c, σ1)
(y1, . . . , yn)← Extrsk(ĉ1, . . . , ĉn)
halt if c ∈ (ĉ1, . . . , ĉn)
if A4(m1, y1, . . . , yn, σ2) = s, return 1
else return 0

Figure 3: The game for non-malleability w.r.t. commitment

that is non-malleable with respect to commitment is also non-malleable with
respect to opening. When the adversary in the game of non-malleability with
respect to commitment has given the commitments to the challenger, he is no
longer able to attack in any way, even if he gets to know a backdoor or gets
infinite computing power. However, in the case of non-malleability with respect
to opening, the adversary can influence the input of A4 after it has given the
commitments to the challenger. But, as mentioned before, non-malleability
w.r.t. opening is usually enough in practical applications.

Next, we will show that non-malleability implies hiding and binding. It
suffices to show that this is true for the non-malleability property with respect to
opening. Non-malleability with respect to commitment implies non-malleability
with respect to opening, so it also implies hiding and binding because implication
is transitive.

Theorem 7.1. A commitment scheme that is (t, ε)-non-malleable with respect
to opening is also (τ, ε)-hiding, where τ = t−O(1).

Proof. We use proof by contradiction to show that non-malleability w.r.t. open-
ing implies hiding. For the sake of contradiction, assume that the τ -time adver-
sary B = (B1, B2) playing the hiding game, achieves advantage

Advhid

Com(B) =

∣∣∣∣∣2 · Pr

[
pk← Gen, s← {0, 1} , (m0,m1, σ)← B1(pk),
(c, d)← Compk(ms) : B2(σ, c) = s

]
− 1

∣∣∣∣∣ > ε .

Then the adversary A = (A1, A2, A3, A4) can use the adversary B to win the
non-malleability game depicted in Fig. 2. At the beginning of the game, A1

uses B1 to output (m0,m1, σ). The commitment c of one of these messages and
the inner state σ are given to A2 that passes them on to B2. Similarly to the
hiding game, B2 now outputs a guess s and succeeds with probability greater
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than ε. This guess is put into the state σ2. Everything works as before, except
when A4 receives σ2 as part of its input, it no longer needs to output a guess
itself, but can simply use the guess from B2. So the adversary A also succeeds
with probability greater than ε, but this contradicts the assumption that the
scheme is non-malleable with respect to opening.

Theorem 7.2. A commitment scheme that is (t, ε)-non-malleable with respect
to opening is also (τ, ε)-binding, where τ = t−O(1).

Proof. We use proof by contradiction to show that non-malleability w.r.t. open-
ing implies binding. For the sake of contradiction, assume that the τ -time ad-
versary B playing the binding game, achieves advantage

Advbind

Com(B) = Pr

[
pk← Gen, (ĉ, d̂0, d̂1)← B(pk) :

⊥ 6= Openpk(ĉ, d̂0) 6= Openpk(ĉ, d̂1) 6= ⊥

]
> ε .

Then the adversary A = (A1, A2, A3, A4) can use the adversary B to win the
non-malleability game from Fig. 2. The A1 part of the adversary outputs two
messages m0, m1 and a state σ1. Next, A2 can use B to create a commitment
ĉ and find a double decommitment (d̂0, d̂1) that opens ĉ to either y0 or y1. The
new commitment ĉ and the decommitment pair (d̂0, d̂1) are enclosed in σ2. We
let A2 output ĉ, σ2 when it receives c and σ1. We know that by definition A3

has access to the original decommitment value d, but the problem is that it
cannot pass on any implicit information to A4 about d or the message that was
committed to. With the help of the adversary B we now have a situation, where
A3 knows which of the two messages the commitment c belongs to, and it is
also capable of forwarding the information about this one bit to A4. To do this,
A3 simply chooses the corresponding decommitment from the pair (d̂0, d̂1)—it
chooses d̂0 when the commitment opens to m0, and d̂1 otherwise.

It is quite straightforward to see that when the function Open is run on
the commitment from A2 and decommitment from A3, the result y is either
y0 or y1. This means that y represents the index of the message that the
original commitment c was made to. Now, it is simple for A4 to output the
correct answer. The adversary A succeeds with the same probability as B. This
probability, however, is larger than ε and this contradicts the assumption that
the scheme is non-malleable with respect to opening.

We show that IND-CCA2 security implies non-malleability. As discussed
before, the commitment scheme needs to be extractable to achieve duality with
encryption schemes. In the following theorems, let Enc = (GenEnc ,Enc,Dec)
be an encryption scheme and Com = (GenCom ,Gen∗Com ,Com,Open,Extr) be a
commitment scheme.

Theorem 7.3. Let Enc and Com be in canonical correspondence. Then (t, ε)-
IND-CCA2 security implies (t, ε)-non-malleability with respect to commitment.
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Proof. Since Enc and Com are in canonical correspondence, we can unify the
extraction and decryption oracles as Extrsk(·). We use proof by contradiction
to show that the constructed commitment scheme Com is non-malleable. For
the sake of contradiction, we assume that, the encryption scheme is IND-CCA2
secure but the commitment scheme is not non-malleable. Let A = (A1, A2, A4)
be a corresponding adversary that plays the game GA

nm−com from Fig. 3 and
achieves advantage

Advnm

Com(A) =
∣∣2 · Pr

[
GA = s

]
− 1

∣∣ > ε .

Now we show that the scheme cannot be IND-CCA2 secure. We use the adver-
sary A to construct another adversary B = (B1, B2), where B1 is the same as A1

receiving pk and outputting (m0,m1, σ1) and B2 is constructed by uniting parts
A2 and A4 of the adversary A. In the IND-CCA2 game B2 gets the encryption
e and additional information from B1 in the form of σ1. This state contains,
without loss of generality, the messages m0 and m1. By definition, B2 can use
the decryption oracle and ask it to decrypt any encryption he wants except the
one he was given, and then has to output its guess about which of the messages
was encrypted. We can use parts of the adversary A to execute the described
actions. The input for B2 is given to A2 that outputs the tuple of commitments
(ĉ1, . . . , ĉn) that will be given as a query to the extraction oracle Extrsk(·), and
an internal state σ2. As mentioned before, the extraction and decryption oracles
coincide because of the correspondence between Enc and Com and, thus, B2 can
submit the query to Extrsk(·) in the IND-CCA2 game. The oracle outputs the
tuple of results (y1, . . . , yn) that are given as input to A4. Now, the output s′

of A4 is also given as the output of B2. The algorithm for B2 can compactly be
written as

B2(e, σ1) (ĉ1, . . . , ĉn, σ2)← A2(e, σ1)
(y1, . . . , yn)← Extrsk(ĉ1, . . . , ĉn)
Return A4(m1, y1, . . . , yn, σ2)

The adversary B plays the IND-CCA2 game. Since B by construction behaves
exactly like A, it achieves advantage

Advind−cca2(B) =

∣∣∣∣∣∣∣2 · Pr

 (pk, sk)← Gen, s← {0, 1} ,

(m0,m1, σ1)← B1(pk),

e← Encpk(ms) : B
Extrsk(·)
2 (σ1, e) = s

− 1

∣∣∣∣∣∣∣ > ε .

But this contradicts the assumption that the encryption scheme is IND-CCA2
secure. Hence, the commitment scheme must be non-malleable.

Unfortunately, non-malleability under chosen plaintext attack (NM-CPA)
does not imply IND-CCA2 security. On the other hand, it has been proved
that non-malleability under chosen ciphertext attack (NM-CCA2) implies IND-
CCA2 security and vice versa [BS99, DDN91].
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8 Conclusion

In this seminar paper we give an overview of the duality of commitment schemes
and encryption schemes. It is rather simple to construct a commitment scheme
from any encryption scheme, but a commitment scheme must be extractable in
order to be the basis for an encryption scheme. Extractability is an additional
property of commitment schemes that is used for theoretical constructions and
proofs. It uses certain information, that is usually not available, to open com-
mitments without the decommitment value. The extractability property implies
that the commitment scheme can only be computationally hiding.

We also show that computational hiding is dual with IND-CPA security and
that IND-CCA2 security implies non-malleability.
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