Michael Backes

Saarland University, Germany joint work with Birgit Pfitzmann and Michael Waidner

Secure Reactive Systems, Day 2:

Reactive Simulatability – Composition and First Applications

Tartu, 02/28/06

Recall the Big Picture

Recall the RS Framework

- Precise system model allowing cryptographic and abstract operations
- Reactive simulatability with composition theorem
- Preservation theorems for security properties
- Concrete pairs of idealizations and secure realizations
- Sound symbolic abstractions (Dolev-Yao models) that are suitable for tool support
- Sound security proofs of security protocols: NSL, Otway-Rees, iKP, etc.
- Detailed Proofs (Poly-time, cryptographic bisimulations with static information flow analysis, ...)

Recall the RS Framework

- Precise system model allowing cryptographic and abstract operations
- Reactive simulatability with composition theorem
- Preservation theorems for security properties
- Concrete pairs of idealizations and secure realizations
- Sound symbolic abstractions (Dolev-Yao models) that are suitable for tool support
- Sound security proofs of security protocols: NSL, Otway-Rees, iKP, etc.
- Detailed Proofs (Poly-time, cryptographic bisimulations with static information flow analysis, ...)

Definitions Bottom-up

1. General Model:

- Collections of probabilistic I/O automata
 - connections via "ports"
- Turing machine realization (realistic)
- Timing
 - Asynchronous: Distributed scheduling via clock ports
 - Synchronous: Clk: Subrounds → P(M*)

Definitions Bottom-up

- 2. Security-Specific System Model:
 - Structure: (M, S) with S ⊆ Ports(M)
 "service ports"

• Configurations: (M, S, H, A)

Soundness: Reactive Simulatability

Real system

Ideal system

Indistinguishability [Yao_82]

Families of random variables:

$$(v_k)_{k \in IN} \approx_{poly} (v'_k)_{k \in IN}$$

 $\Leftrightarrow \forall D$ (prob. poly. in first input):

$$| \Pr(D(1^k, v_k) = 1) - \Pr(D(1^k, v_k') = 1) |$$

 $\leq 1 / \operatorname{poly}(k).$

Blackbox Reactive Simulatability

 $view_{real}(H) \approx view_{ideal}(H)$

Sufficient for black-box:

M₁+M₂ behave the same as TH+Sim

Some Simple Simulations

On the board...

Base Lemmas about Reactive Simulatability

Base Lemmas (Examples)

- Machine combination is defined and
 - is associative
 - retains poly-time (for strong version)
 - retains sub-machine views
- "As secure as" is transitive. E.g., with composition:

Reactive Simulatability Variants

- Equivalent with "guess"
- Standard simulatability: ∀A ∀H ∃A'
- Universal simulatability: ∀A∃A' ∀H
- Blackbox simulatability: ∃Sim ∀H ∀A A'=Sim&A
- Perfect / statistic / computational

Some Other Model Variants

- Quantifier order [PSW00,L03,DKMRS04]
- Guessing output of adversary [PSW00]
- Different types of timing [PSW00,B03]
- Different use of "service ports" (≈ environments) [PSW00]
- Auxiliary inputs or not [PSW00]
- Mapping of LMMS,PW,C: [DKMRS04, A...04]
- Secure, insecure, authentic, reliable, broadcast channels [PSW00,BPSW02]
- Static and adaptive corruptions [PW01,C01]
- Proactive [BCS03]

Composition – One System

Given:

Then this holds:

Proof Idea (Single Composition)

Composition – Multiple Systems

Given:

 \geq

Also this holds:

General Composition Proof via Hybrid Systems

Composability Types

	Constant many identical prot.	Constant many different prot.	Poly many identical prot.	Poly many different prot.
General	[PW00, PW01] [L03]	[PW00,PW01] [L03]		
Universal	[PW00, PW01] [C01]	[PW00,PW01]	[C01] [BPW04]	[BPW04]
Blackbox	[PW00, PW01]	[PW00,PW01]	[BPW04]	[BPW04]