Michael Backes Saarland University, Germany joint work with Birgit Pfitzmann and Michael Waidner

Secure Reactive Systems, Day 5:

Preservation Theorems for Dolev-Yao Models and Limits of Soundness

Tartu, 03/01/06

Recall the RS Framework

- Precise system model allowing cryptographic and abstract operations
- Reactive simulatability with composition theorem
- Preservation theorems for security properties
- Concrete pairs of idealizations and secure realizations
- Sound symbolic abstractions (Dolev-Yao models) that are suitable for tool support
- Sound security proofs of security protocols: NSL, Otway-Rees, iKP, etc.
- Detailed Proofs (Poly-time, cryptographic bisimulations with static information flow analysis, ...)

Recall the RS Framework

- Precise system model allowing cryptographic and abstract operations
- Reactive simulatability with composition theorem
- Preservation theorems for security properties
- Concrete pairs of idealizations and secure realizations
- Sound symbolic abstractions (Dolev-Yao models) that are suitable for tool support
- Sound security proofs of security protocols: NSL, Otway-Rees, iKP, etc.
- Detailed Proofs (Poly-time, cryptographic bisimulations with static information flow analysis, ...)
- Limitations, ...

Proving the Needham-Schroeder-Lowe Protocol with the BPW Model

The NS Public-Key Protocol

Authentication protocol

u → v:
$$E_{pk_v}(N_u, u)$$

v → u: $E_{pk_u}(N_u, N_v)$
u → v: $E_{pk_v}(N_v)$

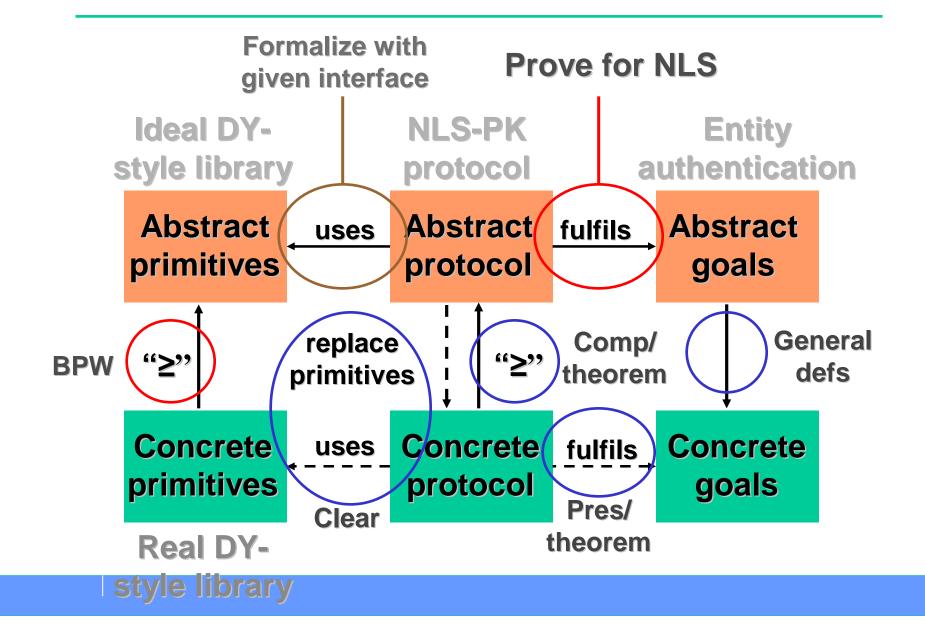
 Afterwards successfully terminating the protocol, v knows that u wanted to communicate with v.

Wrong!

The NSL Public-Key Protocol

- Originally Needham and Schroeder 78
- Modified by Lowe 95 after MITM attack

$$u \rightarrow v: E_{pk_v}(N_u, u)$$

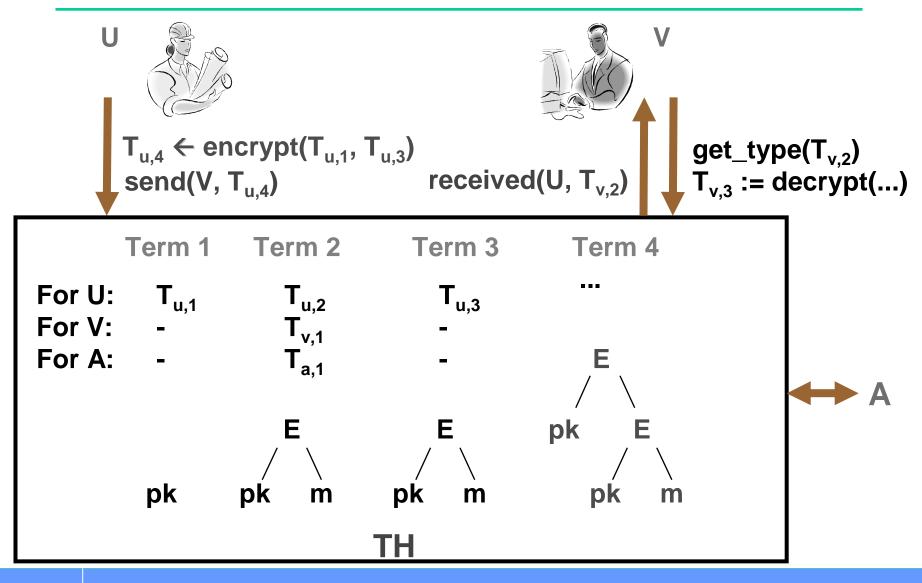

$$v \rightarrow u: E_{pk_u}(N_u, N_v, v)$$

 $u \rightarrow v: E_{pk_v}(N_v)$

- Multiple proofs over Dolev-Yao (Lowe, Meadows, Syverson, Schneider, ...)
- No prior cryptographic proof; concurrently by Warinschi (directly cryptographic)
- All formal methods (and crypto) need refined protocol definition; sometimes automated

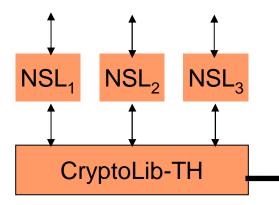
Saarland University

Recall: Sound Abstract Protocol Proofs



Recall: Dolev-Yao Model

- Idea [DY81]
 - Abstraction as term algebras, e.g., D_x(E_x(E_x(m)))
 - Cancellation rules, e.g., $D_x E_x = \varepsilon$
- Well-developed proof theories
 - Abstract data types
 - Equational 1st-order logic
- Important for security proofs:
 - Inequalities! (Everything that cannot be derived.)
 - Known as "initial model"


Important goal: Justify or replace

Recall: BPW Model

Saarland University

The NSL Protocol over BPW Model

Refining
$$u \rightarrow v: E_{pk_v}(N_u, u)$$

For NLS_u:

- 1. $n_u^{hnd} \leftarrow gen_nonce();$
- 2. Nonce_{u,v} := Nonce_{u,v} \cup {n_u^{hnd}};
- 3. $u^{hnd} \leftarrow store(u);$
- 4. $I^{hnd} \leftarrow list(n_u^{hnd}, u^{hnd});$
- 5. $c^{hnd} \leftarrow encrypt(pke_{u,v}^{hnd}, I^{hnd});$
- 6. send_i(v, C^{hnd})

Informal Entity Authentication Property

- "When v thinks it speaks with u, then it does."
- "When v successfully terminates a session thinking to speak with u, then u indeed started a session with v."

Remarks:

- Entity authentication is weak: no session key, no time.
- Mutual authentication and replay prevention possible.

Entity Authentication in Our Model

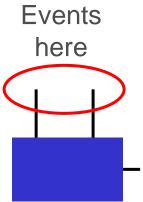
- Important for preservation theorem: Property expressed as user in-/outputs
- Here
 - "successful termination" as output for v
 - "protocol start" as input from *u*

 $\exists t_1: EA_out_v!(ok, u) \\ \Rightarrow \exists t_0 < t_1: EA_in_u?(new_prot, v)$

Recall: Property Preservation

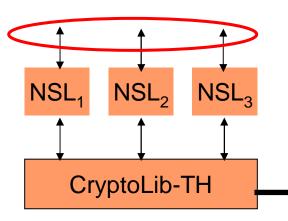
Preservation theorems over "≥" for

Integrity properties



- Some confidentiality properties:
 - Non-interference
 - Intransitive non-interference
 - Strong key and message secrecy (later)
- "Polynomial liveness"

Recall: Integrity Preservation Theorem


- Integrity property: Set of permitted traces at ports to the users
 - E.g., semantics of temporal logic
- Cryptographic semantics
 - Perfect / statistical / computational fulfillment
 - Poly: ∀A∈ PPT: P(run 「ports to the user ∉ I) ∈ NEGL
- Preservation Theorem:

 $(Sys_{real} \ge Sys_{ideal}) \land (Sys_{ideal} \text{ fulfills I}) \land I \text{ poly testable} \implies (Sys_{real} \text{ fulfills I})$

Serving that NSL Fulfills Entity Authentication

EA definition

Idea:

- v terminates protocol with u
- \Rightarrow u sent 3rd message
- \Rightarrow u obtained 2nd message
- \Rightarrow v sent 2nd message

Proof via invariants.

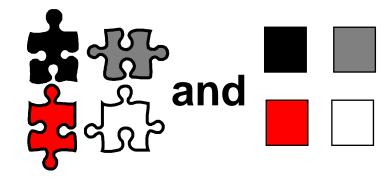
E.g., nonce secrecy:

- Informal: Honest *u* created N_u for honest *v* $\Rightarrow N_u$ only known to u and v
- Formal: D[j].hnd_u \in Nonce_{u,v} \Rightarrow (D[j].hnd_w = \downarrow for all $w \notin \{u, v\}$)

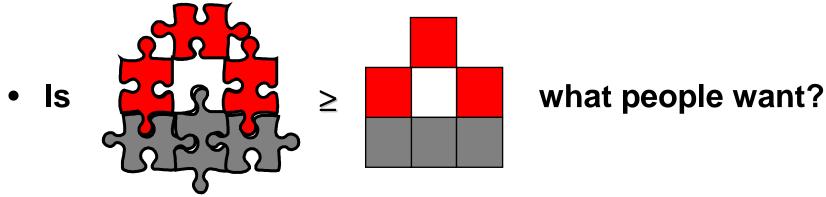
The Other Invariants

- Correct nonce owner (*Nonce*_{*u*,*v*} \leftrightarrow handles)
- Unique nonce use
- Nonce list secrecy (List with N_u has handles for u, v only) 3. $u \rightarrow v: E_{pk}(N_v)$
- Correct list creator (for the 3) protocol messages)

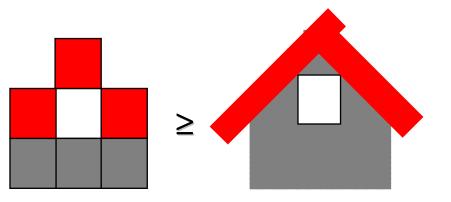
- 1. $u \rightarrow v: E_{pk v}(N_u, u)$
- 2. $v \rightarrow u: E_{pk u}(N_u, N_v, v)$


```
• Msg 1:
If D[ j ].type = list:
Let x_i := D[j].arg[i] and x_i^{hnd} := D[x_i].hnd<sub>u</sub>:
If x_1^{\text{hnd}} \in Nonce_{u,v} and D[x_2].type = data then D[j] was
created by user u in Step 4.
```

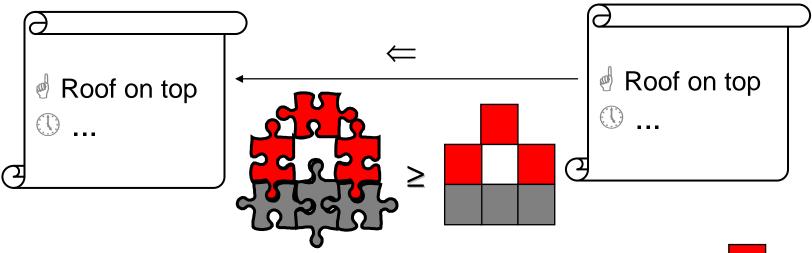
Saarland University

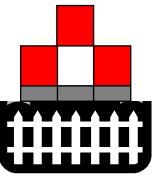

Relating Symbolic and Cryptographic Secrecy

Recall Prior Result


- "as secure as" (reactive simulatability)
- for certain versions of

Specification Styles

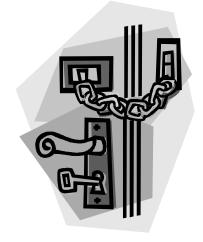

• Often yes, in particular together with


- E.g., secure channels (see also spi calculus), certified mail
- But not always ...

Alternative: Property-based spec.

- E.g., "I want a tight roof on top": integrity
 - Preserved by "≥":

- Also preserved:
 - Non-interference (info-flow secrecy, strong)
 - Liveness (poly ...)



Secrecy of Individual Things or Actions

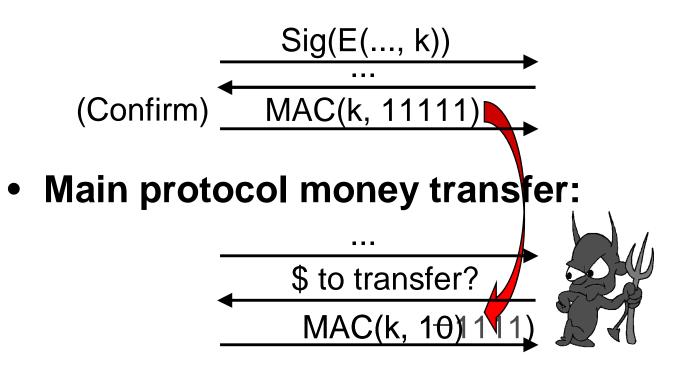
- "Keep my burglar alarms secret"
 - System-related secret
 - Pretty much doable by designer alone
 - Only simple rules for user
- "People shouldn't see what I eat"
 - Secret of the user
 - Can't be done by designer alone
 - Distinguish "user leak" from "system leak"

Key Secrecy

- Standard symbolic definition: k does not get into A's knowledge set
- Standard cryptographic definition: k indistinguishable from random r given A's view
- We essentially show

k symb secret \Rightarrow *k* crypt secret

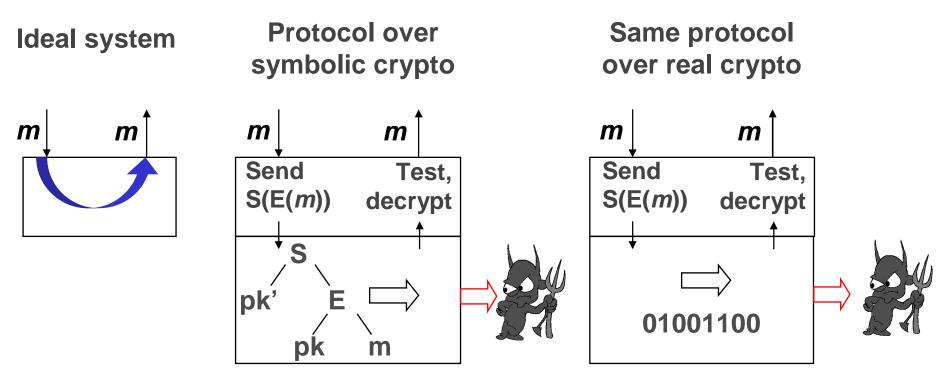
• One main exception: k must be


"symbolically unused":

 \Leftrightarrow no term E(k, m) resp. MAC(k, m) in A's knowledge set

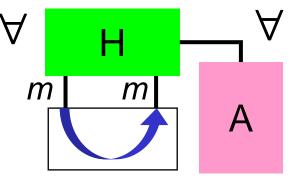
(i.e., no such term has been constructed in the DY-model by any protocol).

Why Is "Symbolically Unused" Needed?


• Example KX protocol:

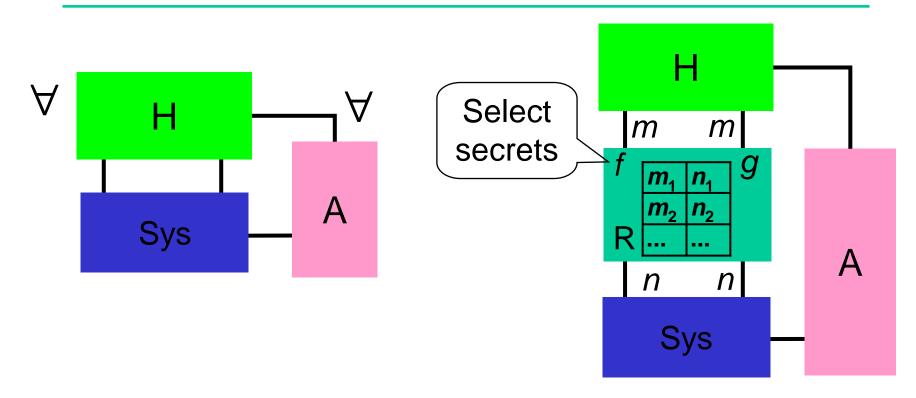
• Cryptographic definition was designed for arbitrary sequential composition and really needs this.

Payload Secrecy – Definition Problems


• E.g., secure channel

- Is *m* secret? According to what definition?
- Should be true at least for this ideal system

Is *m* Secret for Ideal Secure Channel?


Not with the following strict definition (due to partial info and active attacks)

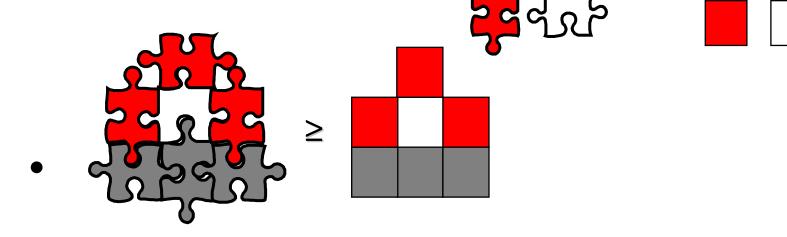
m indistinguishable from random *r*

- Main related cryptographic definition: For encryption:
 - Specific message-chooser
 - Specific condition that one ciphertext *c* is not decrypted.
- Other such specific def's exist, but no general one.

Replacement Machine as Generalization

$view_{normal}(H) \approx view_{withR}(H)$

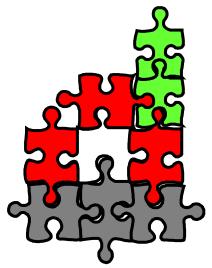
Idea: If system leak, A and thus H would notice that *n* used instead of *m*

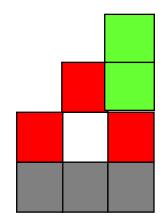

Results on Payload Secrecy

- Preservation theorem for this cryptographic payload secrecy over "≥".
- Symbolic payload secrecy
 - \wedge benign info flow of payload
 - ⇒ cryptographic payload secrecy

Impossibility Results: Unsoundness of Symbolic XOR and Symbolic Hash functions

Recall Prior Result

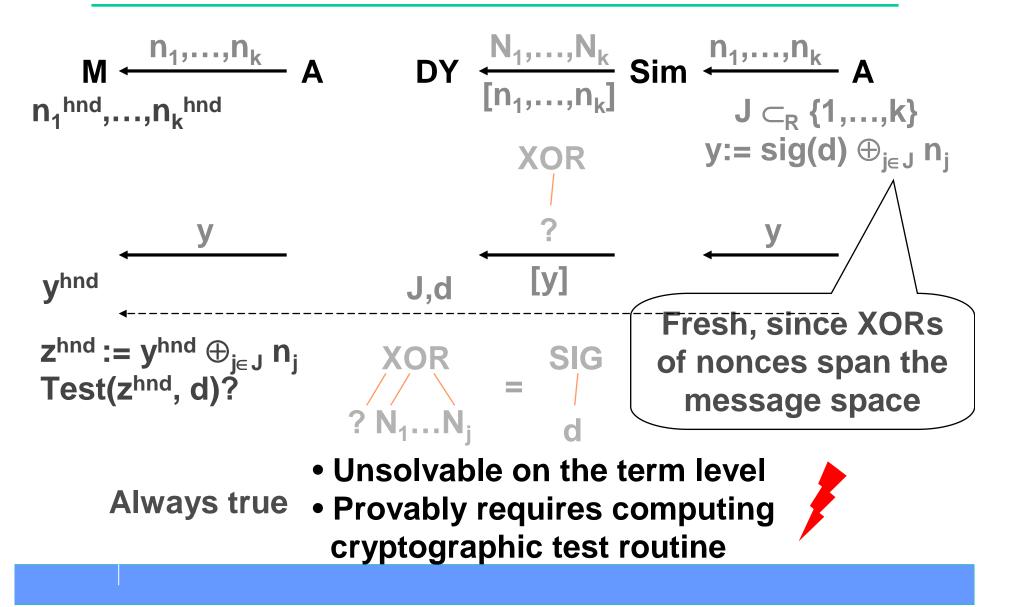

- "as secure as" (reactive simulatability)
- for certain versions of Sand and


 What about abstract XOR (operator with algebraic properties) and hashes (no cancellation rules and no inverse)?

Extension to XOR?

- Given real XOR/Hash
 - Secure?

 \geq


Impossibility Results: Symbolic XOR

Symbolic XOR not securely realizable wrt. blackbox simulatability

"No Dolev-Yao style XOR can be securely realized wrt blackbox simulatability by any (moderately natural) implementation of XOR"

- "Meta-theorem", hard to prove:
 - Reactive Simulatability reflexive
 - "Dolev-Yao style" difficult to capture formally
 - What is "natural implementation of XOR"?
 - \rightarrow Series of concrete statements that can be verified
- + Symbolic XOR sound under passive attacks

General Counterexample

One Reason why Hash Functions fail

- Needed: $Pr[y = true] \ge 1 1/poly(k)$
- Properties of hash give: $Pr[y = true] \le 1/poly(k)$

Summary of Secure Reactive Systems

- Reactive simulatability: core definition to link
 cryptography and formal methods
- Justifying Dolev-Yao-style abstraction as the most important task (and this works for a lot of the common operations!)
- But also great for lots of other abstractions of various crypto primitives
- Composition and property preservation theorems
 enable usage
- First cryptographically sound proofs of Needham-Schroeder-Lowe, Otway-Rees, payment systems, etc.
- Now also limitations: Dolev-Yao-style Hash functions and XOR do not work

More Information

- <u>backes@cs.uni-sb.de</u>
- http://www.zurich.ibm.com/security/models/
- Read just one paper?
 - ACM CCS 2003 (soundness)
 - ESORICS 2005 (impossibility)
- Read more? Oakland 2005, CSFW 2004, IEEE JSAC 2004, ESORICS 2003